論文の概要: Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2111.00722v1
- Date: Mon, 1 Nov 2021 06:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 14:01:42.908410
- Title: Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークの解法の拡張によるグラフニューラルネットワークのエッジレベル説明
- Authors: Tetsu Kasanishi, Xueting Wang, and Toshihiko Yamasaki
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
本稿では,CNNに対する説明可能性の手法として,LIME(Local Interpretable Model-Agnostic Explanations)やGradient-Based Saliency Maps,Gradient-Weighted Class Activation Mapping(Grad-CAM)をGNNに拡張する。
実験結果から,LIMEに基づくアプローチは実環境における複数のタスクに対する最も効率的な説明可能性手法であり,その状態においても優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 33.20913249848369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are deep learning models that take graph data as
inputs, and they are applied to various tasks such as traffic prediction and
molecular property prediction. However, owing to the complexity of the GNNs, it
has been difficult to analyze which parts of inputs affect the GNN model's
outputs. In this study, we extend explainability methods for Convolutional
Neural Networks (CNNs), such as Local Interpretable Model-Agnostic Explanations
(LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation
Mapping (Grad-CAM) to GNNs, and predict which edges in the input graphs are
important for GNN decisions. The experimental results indicate that the
LIME-based approach is the most efficient explainability method for multiple
tasks in the real-world situation, outperforming even the state-of-the-art
method in GNN explainability.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフデータを入力として扱うディープラーニングモデルであり、トラフィック予測や分子特性予測といった様々なタスクに適用される。
しかしながら、GNNの複雑さのため、入力のどの部分がGNNモデルの出力に影響を与えるかを分析することは困難である。
本研究では,GNNに対して局所解釈型モデル非依存記述(LIME)やグラディエント・ベース・サリエンシマップ,グラディエント・クラス活性化マッピング(Grad-CAM)などの畳み込みニューラルネットワーク(CNN)の説明可能性手法を拡張し,入力グラフのどのエッジが重要かを予測する。
実験結果から,limeベースの手法は実環境における複数タスクの最も効率的な説明可能性であり,gnnによる説明可能性の最先端手法よりも優れていることが示唆された。
関連論文リスト
- DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
グラフニューラルネットワーク(GNN)は、グラフィカルなタスクをエンドツーエンドで処理するニューラルネットワークの一種である。
GNNの複雑なダイナミクスは、グラフの特徴のどの部分が予測に強く寄与しているかを理解するのを困難にしている。
本研究では,グラフ内の重要な構造を検出するために,フレキシブルモデルに依存しない説明法を提案する。
論文 参考訳(メタデータ) (2023-02-04T09:46:47Z) - Explainability in subgraphs-enhanced Graph Neural Networks [12.526174412246107]
グラフ強化グラフニューラルネットワーク(SGNN)は,GNNの表現力を高めるために導入された。
本稿では, GNN の最近の解説者の一つである PGExplainer を SGNN に適用する。
本稿では,グラフ分類タスクにおけるSGNNの決定過程を説明することに成功していることを示す。
論文 参考訳(メタデータ) (2022-09-16T13:39:10Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
本稿では,補助的説明の集約によるノード分類タスクの説明品質の向上手法を提案する。
SEENを適用するにはグラフを変更する必要はなく、さまざまな説明可能性のテクニックで使用することができる。
与えられたグラフからモチーフ参加ノードをマッチングする実験では、説明精度が最大12.71%向上した。
論文 参考訳(メタデータ) (2021-06-16T03:04:46Z) - GNNLens: A Visual Analytics Approach for Prediction Error Diagnosis of
Graph Neural Networks [42.222552078920216]
Graph Neural Networks(GNN)は、ディープラーニング技術をグラフデータに拡張することを目的としている。
GNNは、モデル開発者やユーザから詳細を隠したブラックボックスのように振る舞う。
したがって、GNNの潜在的なエラーを診断することは困難である。
本稿では,対話型視覚分析ツールGNNLensで研究ギャップを埋め,モデル開発者やユーザによるGNNの理解と分析を支援する。
論文 参考訳(メタデータ) (2020-11-22T16:09:08Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。