論文の概要: Optimal Accounting of Differential Privacy via Characteristic Function
- arxiv url: http://arxiv.org/abs/2106.08567v1
- Date: Wed, 16 Jun 2021 06:13:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 05:46:48.054015
- Title: Optimal Accounting of Differential Privacy via Characteristic Function
- Title(参考訳): 特性関数による微分プライバシーの最適会計
- Authors: Yuqing Zhu, Jinshuo Dong and Yu-Xiang Wang
- Abstract要約: 本稿では,プライバシ・プロフィール,プライバシ・プロファイル,$f$-DP,PLDフォーマリズムなどの最近の進歩を,ある最悪のケースのプライバシ・ロスランダム変数の特徴関数(phi$-function)を介して統一することを提案する。
我々のアプローチは、Renyi DPのような自然適応的な構成を可能にし、PDDのような厳密なプライバシ会計を提供し、プライバシープロファイルや$f$-DPに変換できることが示されています。
- 参考スコア(独自算出の注目度): 25.78065563380023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Characterizing the privacy degradation over compositions, i.e., privacy
accounting, is a fundamental topic in differential privacy (DP) with many
applications to differentially private machine learning and federated learning.
We propose a unification of recent advances (Renyi DP, privacy profiles,
$f$-DP and the PLD formalism) via the characteristic function ($\phi$-function)
of a certain ``worst-case'' privacy loss random variable.
We show that our approach allows natural adaptive composition like Renyi DP,
provides exactly tight privacy accounting like PLD, and can be (often
losslessly) converted to privacy profile and $f$-DP, thus providing
$(\epsilon,\delta)$-DP guarantees and interpretable tradeoff functions.
Algorithmically, we propose an analytical Fourier accountant that represents
the complex logarithm of $\phi$-functions symbolically and uses Gaussian
quadrature for numerical computation. On several popular DP mechanisms and
their subsampled counterparts, we demonstrate the flexibility and tightness of
our approach in theory and experiments.
- Abstract(参考訳): コンポジション上のプライバシーの劣化、すなわちプライバシ会計を特徴付けることは、微分プライバシー(DP)における基本的なトピックであり、多くのアプリケーションが微分プライベート機械学習やフェデレーション学習に応用されている。
そこで我々は,ある<worst-case'のプライバシ損失のランダム変数の特徴関数(\phi$-function)を介して,最近の進歩(Renyi DP,プライバシープロファイル,$f$-DP,PLDフォーマリズム)の統合を提案する。
我々のアプローチは、Renyi DPのような自然な適応的な構成を可能にし、PDDのような厳密なプライバシー会計を提供し、プライバシープロファイルや$f$-DPに変換することができ、$(\epsilon,\delta)$-DP保証と解釈可能なトレードオフ関数を提供する。
アルゴリズム上,$\phi$-関数の複素対数を表す解析的フーリエ会計法を提案し,数値計算にガウス二次法を用いる。
いくつかのDPメカニズムとそのサブサンプルについて,理論と実験におけるアプローチの柔軟性と厳密さを実証する。
関連論文リスト
- How Private are DP-SGD Implementations? [61.19794019914523]
2種類のバッチサンプリングを使用する場合、プライバシ分析の間に大きなギャップがあることが示される。
その結果,2種類のバッチサンプリングでは,プライバシ分析の間に大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2024-03-26T13:02:43Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Shifted Interpolation for Differential Privacy [6.1836947007564085]
雑音勾配降下とその変種は、微分プライベート機械学習の主要なアルゴリズムである。
本稿では、$f$差分プライバシの統一化フレームワークにおいて、"corollary によるプライバシ増幅" 現象を確立する。
これは、強力な凸最適化の基礎的な設定において、最初の正確なプライバシー分析につながる。
論文 参考訳(メタデータ) (2024-03-01T04:50:04Z) - Privacy Profiles for Private Selection [21.162924003105484]
私たちは、ReportNoisyMaxとPrivateTuningのプライバシプロファイルを、それらが相関するベースアルゴリズムのプライバシプロファイルを使ってバウンドする、使いやすいレシピを開発しています。
このアプローチはすべての利害関係を改善し、エンドツーエンドのプライベート学習実験において大きなメリットをもたらす。
論文 参考訳(メタデータ) (2024-02-09T08:31:46Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Individual Privacy Accounting with Gaussian Differential Privacy [8.81666701090743]
個別のプライバシ会計は、分析に関わる各関係者に対して、差分プライバシー(DP)の損失を個別に制限することを可能にする。
個人のプライバシー損失を原則的に説明するためには、ランダム化機構の適応的な構成のためのプライバシー会計士が必要である。
論文 参考訳(メタデータ) (2022-09-30T17:19:40Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Smoothed Differential Privacy [55.415581832037084]
微分プライバシー(DP)は、最悪のケース分析に基づいて広く受け入れられ、広く適用されているプライバシーの概念である。
本稿では, 祝賀されたスムーズな解析の背景にある最悪の平均ケースのアイデアに倣って, DPの自然な拡張を提案する。
サンプリング手順による離散的なメカニズムはDPが予測するよりもプライベートであるのに対して,サンプリング手順による連続的なメカニズムはスムーズなDP下では依然としてプライベートではないことが証明された。
論文 参考訳(メタデータ) (2021-07-04T06:55:45Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。