論文の概要: Detecting message modification attacks on the CAN bus with Temporal
Convolutional Networks
- arxiv url: http://arxiv.org/abs/2106.08692v1
- Date: Wed, 16 Jun 2021 10:51:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:14:27.193799
- Title: Detecting message modification attacks on the CAN bus with Temporal
Convolutional Networks
- Title(参考訳): 時間的畳み込みネットワークを用いたcanバスのメッセージ修正攻撃の検出
- Authors: Irina Chiscop, Andr\'as Gazdag, Joost Bosman, Gergely Bicz\'ok
- Abstract要約: 本稿では,CANネットワークに対する新しい機械学習による侵入検出手法を提案する。
提案手法は,CAN信号の正常な動作を学習し,悪質な信号と区別することができる。
- 参考スコア(独自算出の注目度): 0.3441021278275805
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multiple attacks have shown that in-vehicle networks have vulnerabilities
which can be exploited. Securing the Controller Area Network (CAN) for modern
vehicles has become a necessary task for car manufacturers. Some attacks inject
potentially large amount of fake messages into the CAN network; however, such
attacks are relatively easy to detect. In more sophisticated attacks, the
original messages are modified, making the de- tection a more complex problem.
In this paper, we present a novel machine learning based intrusion detection
method for CAN networks. We focus on detecting message modification attacks,
which do not change the timing patterns of communications. Our proposed
temporal convolutional network-based solution can learn the normal behavior of
CAN signals and differentiate them from malicious ones. The method is evaluated
on multiple CAN-bus message IDs from two public datasets including different
types of attacks. Performance results show that our lightweight approach
compares favorably to the state-of-the-art unsupervised learning approach,
achieving similar or better accuracy for a wide range of scenarios with a
significantly lower false positive rate.
- Abstract(参考訳): 複数の攻撃により、車載ネットワークには悪用できる脆弱性があることが示されている。
現代の自動車の制御領域ネットワーク(CAN)の確保は、自動車メーカーにとって必要な課題となっている。
いくつかの攻撃はCANネットワークに大量の偽のメッセージを注入するが、そのような攻撃は比較的容易に検出できる。
より高度な攻撃では、元のメッセージが修正され、デテクションがより複雑な問題になる。
本稿では,CANネットワークに対する新しい機械学習による侵入検出手法を提案する。
我々は、通信のタイミングパターンを変えないメッセージ修正攻撃を検出することに注力する。
提案する時間的畳み込みネットワークベースソリューションは,can信号の正常な振る舞いを学習し,悪意のあるものと区別することができる。
攻撃の種類を含む2つの公開データセットから複数のCANバスメッセージIDを評価する。
結果, 軽量なアプローチは最先端の教師なし学習手法と好適に比較でき, 偽陽性率を有意に低く, 幅広いシナリオにおいて類似あるいは良好な精度が得られることがわかった。
関連論文リスト
- Detecting Masquerade Attacks in Controller Area Networks Using Graph Machine Learning [0.2812395851874055]
本稿では,グラフ機械学習(ML)を用いたCANバスにおけるマスクレード攻撃検出のための新しいフレームワークを提案する。
本稿では,CANバスフレームをメッセージシーケンスグラフ(MSG)として表現し,時系列からコンテキスト統計属性を付加することにより,検出能力を向上できることを示す。
提案手法は,CANフレームの相互作用を包括的かつ動的に解析し,ロバスト性や効率性を向上する。
論文 参考訳(メタデータ) (2024-08-10T04:17:58Z) - Federated Learning for Zero-Day Attack Detection in 5G and Beyond V2X Networks [9.86830550255822]
Connected and Automated Vehicles(CAV)は、5GおよびBeyondネットワーク(5GB)上にあり、セキュリティとプライバシ攻撃のベクトルの増加に対して脆弱である。
本稿では,ネットワークトラフィックパターンのみに依存する攻撃を検知するディープ・オートエンコーダ法を利用した新しい検出機構を提案する。
連合学習を用いて、提案した侵入検知システムは、CAVのプライバシーを維持し、通信オーバーヘッドを最小限に抑えながら、大規模で多様なネットワークトラフィックで訓練することができる。
論文 参考訳(メタデータ) (2024-07-03T12:42:31Z) - Exploring Highly Quantised Neural Networks for Intrusion Detection in
Automotive CAN [13.581341206178525]
機械学習に基づく侵入検出モデルは、標的となる攻撃ベクトルを複数検出することに成功した。
本稿では,多クラス分類モデルとしてのカスタム量子化文学(CQMLP)について述べる。
IDSとして統合された2ビットCQMLPモデルでは、悪意のある攻撃メッセージを99.9%の精度で検出できることが示されている。
論文 参考訳(メタデータ) (2024-01-19T21:11:02Z) - Real-Time Zero-Day Intrusion Detection System for Automotive Controller
Area Network on FPGAs [13.581341206178525]
本稿では,ゼロデイアタックを検出するための教師なし学習に基づく畳み込みオートエンコーダアーキテクチャを提案する。
資源制約のZynq Ultrascaleプラットフォームを対象としたAMD/XilinxのVitis-AIツールを用いてモデルを定量化する。
提案モデルでは, 未知のDoS, ファジング, スプーフィング攻撃に対して, 同一以上の分類精度 (>99.5%) を達成することができた。
論文 参考訳(メタデータ) (2024-01-19T14:36:01Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Detecting CAN Masquerade Attacks with Signal Clustering Similarity [2.2881898195409884]
ファブリケーション攻撃は、フレーム周波数を乱すため、最も管理しやすく、最も検出し易い。
マスクレード攻撃は、車両のCAN信号の階層的クラスタリングを用いて、時系列のクラスタリング類似性を計算することで検出できる。
我々は,CANマスクレード攻撃の検出方法として提案手法の可能性を実証するために,法医学的ツールを開発した。
論文 参考訳(メタデータ) (2022-01-07T20:25:40Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
車両内ネットワークのためのセキュリティ強化システムを提案する。
提案システムは,CANバスで測定した電圧信号から抽出した深い特徴を処理する2つの機構を含む。
論文 参考訳(メタデータ) (2021-06-15T06:12:33Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
本稿では,大規模なマルチインプット・マルチアウトプット(MAMIMO)ネットワークのダウンリンクにおいて,逆攻撃がDLベースの電力割り当てを損なう可能性があることを示す。
我々はこれらの攻撃のパフォーマンスをベンチマークし、ニューラルネットワーク(NN)の入力に小さな摂動がある場合、ホワイトボックス攻撃は最大86%まで実現不可能な解決策をもたらすことを示した。
論文 参考訳(メタデータ) (2021-01-28T16:18:19Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。