論文の概要: CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals
- arxiv url: http://arxiv.org/abs/2106.07895v1
- Date: Tue, 15 Jun 2021 06:12:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-16 14:58:37.312471
- Title: CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals
- Title(参考訳): CAN-LOC:電圧信号の深い特徴に基づく車載CANバスのスポーフィング検出と物理的侵入位置決定
- Authors: Efrat Levy and Asaf Shabtai and Bogdan Groza and Pal-Stefan Murvay and
Yuval Elovici
- Abstract要約: 車両内ネットワークのためのセキュリティ強化システムを提案する。
提案システムは,CANバスで測定した電圧信号から抽出した深い特徴を処理する2つの機構を含む。
- 参考スコア(独自算出の注目度): 48.813942331065206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Controller Area Network (CAN) is used for communication between
in-vehicle devices. The CAN bus has been shown to be vulnerable to remote
attacks. To harden vehicles against such attacks, vehicle manufacturers have
divided in-vehicle networks into sub-networks, logically isolating critical
devices. However, attackers may still have physical access to various
sub-networks where they can connect a malicious device. This threat has not
been adequately addressed, as methods proposed to determine physical intrusion
points have shown weak results, emphasizing the need to develop more advanced
techniques. To address this type of threat, we propose a security hardening
system for in-vehicle networks. The proposed system includes two mechanisms
that process deep features extracted from voltage signals measured on the CAN
bus. The first mechanism uses data augmentation and deep learning to detect and
locate physical intrusions when the vehicle starts; this mechanism can detect
and locate intrusions, even when the connected malicious devices are silent.
This mechanism's effectiveness (100% accuracy) is demonstrated in a wide
variety of insertion scenarios on a CAN bus prototype. The second mechanism is
a continuous device authentication mechanism, which is also based on deep
learning; this mechanism's robustness (99.8% accuracy) is demonstrated on a
real moving vehicle.
- Abstract(参考訳): コントローラエリアネットワーク(CAN)は車載機器間の通信に使用される。
CANバスは遠隔攻撃に弱いことが示されている。
このような攻撃に対抗するため、車両メーカーは車載ネットワークをサブネットワークに分割し、重要なデバイスを論理的に分離した。
しかし、攻撃者は悪意のあるデバイスを接続できる様々なサブネットワークに物理的にアクセスすることができる。
この脅威は、物理的侵入点を決定する方法が弱い結果を示し、より高度な技術開発の必要性を強調しているため、適切に対処されていない。
この種の脅威に対処するため,車載ネットワークのセキュリティ強化システムを提案する。
提案システムは,CANバスで測定した電圧信号から抽出した深い特徴を処理する2つの機構を含む。
第1のメカニズムは、データ拡張とディープラーニングを使用して、車両の開始時に物理的侵入を検出し、検出する。
この機構の有効性(100%精度)は、CANバスのプロトタイプ上で様々な挿入シナリオで実証される。
第2のメカニズムは、深層学習に基づく継続的デバイス認証機構であり、このメカニズムの堅牢性(99.8%の精度)は、実動車上で実証される。
関連論文リスト
- Navigating Connected Car Cybersecurity: Location Anomaly Detection with RAN Data [2.147995542780459]
ハイジャックやスパイ活動を含むサイバー攻撃は、コネクテッドカーに重大な脅威をもたらす。
本稿では,Radio Access Network (RAN) イベント監視による潜在的な攻撃を識別するための新しいアプローチを提案する。
本論文の主な貢献は,複数箇所に同時に出現するデバイスを識別する位置異常検出モジュールである。
論文 参考訳(メタデータ) (2024-07-02T22:42:45Z) - Your Car Tells Me Where You Drove: A Novel Path Inference Attack via CAN Bus and OBD-II Data [57.22545280370174]
On Path Diagnostic - Intrusion & Inference (OPD-II) は物理カーモデルとマップマッチングアルゴリズムを利用した新しい経路推論攻撃である。
我々は4台の異なる車両と41トラックの道路および交通シナリオに対する攻撃を実行した。
論文 参考訳(メタデータ) (2024-06-30T04:21:46Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
本稿では,車内機能安全とサイバーセキュリティをモデル化・解析するためのSOME/IP通信トラフィックベースアプローチであるSISSAを提案する。
具体的には、SISSAはWeibullディストリビューションでハードウェア障害をモデル化し、SOME/IP通信に対する5つの潜在的な攻撃に対処する。
広範囲な実験結果から,SISSAの有効性と有効性が確認された。
論文 参考訳(メタデータ) (2024-02-21T03:31:40Z) - Detecting subtle cyberattacks on adaptive cruise control vehicles: A machine learning approach [4.610653122777888]
運転行動がわずかに変化しただけで、より汚い攻撃は、ネットワーク全体の混雑、燃料消費、さらにはクラッシュリスクさえも、容易に検出されずに増加させる可能性がある。
本稿では,車両制御コマンドの不正な操作,センサ計測に対する偽データ注入攻撃,DoS攻撃の3種類のサイバー攻撃に対するトラフィックモデルフレームワークを提案する。
車両軌跡データを用いた攻撃をリアルタイムに識別するために,GANに基づく新しい生成逆数ネットワーク(generative adversarial network, GAN)を用いた異常検出モデルを提案する。
論文 参考訳(メタデータ) (2023-10-26T01:22:10Z) - GCNIDS: Graph Convolutional Network-Based Intrusion Detection System for CAN Bus [0.0]
本稿では,GCN(Graph Convolutional Network)技術を利用して,CANバス内の侵入者検出に革新的なアプローチを提案する。
実験結果から,提案手法が既存のIDSよりも精度,精度,リコールに優れていることが確認された。
提案手法は、現代の車両の安全性と安全性の確保に大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-09-18T21:42:09Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - X-CANIDS: Signal-Aware Explainable Intrusion Detection System for Controller Area Network-Based In-Vehicle Network [6.68111081144141]
X-CANIDSは、CANデータベースを使用して、CANメッセージのペイロードを人間の理解可能な信号に分解する。
X-CANIDSはトレーニングフェーズにラベル付きデータセットを必要としないため、ゼロデイ攻撃を検出することができる。
論文 参考訳(メタデータ) (2023-03-22T03:11:02Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - CAN-BERT do it? Controller Area Network Intrusion Detection System based
on BERT Language Model [2.415997479508991]
深層学習に基づくネットワーク侵入検知システムであるCAN-BERTを提案する。
BERTモデルは,CANバス内の調停識別子(ID)のシーケンスを異常検出のために学習可能であることを示す。
また、車内侵入を0.8msから3msのCANIDシーケンス長でリアルタイムに識別できるだけでなく、F1スコアの0.81から0.99で様々なサイバー攻撃を検出できる。
論文 参考訳(メタデータ) (2022-10-17T21:21:37Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。