AtrialGeneral: Domain Generalization for Left Atrial Segmentation of
Multi-Center LGE MRIs
- URL: http://arxiv.org/abs/2106.08727v2
- Date: Fri, 18 Jun 2021 01:26:28 GMT
- Title: AtrialGeneral: Domain Generalization for Left Atrial Segmentation of
Multi-Center LGE MRIs
- Authors: Lei Li and Veronika A. Zimmer and Julia A. Schnabel and Xiahai Zhuang
- Abstract summary: Left atrial (LA) segmentation from late gadolinium enhanced magnetic resonance imaging (LGE MRI) is a crucial step needed for planning the treatment of atrial fibrillation.
Deep learning-based methods can provide promising LA segmentation results, but they often generalize poorly to unseen domains.
We employ four commonly used semantic segmentation networks for the LA segmentation from multi-center LGE MRIs.
- Score: 18.22326892162902
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Left atrial (LA) segmentation from late gadolinium enhanced magnetic
resonance imaging (LGE MRI) is a crucial step needed for planning the treatment
of atrial fibrillation. However, automatic LA segmentation from LGE MRI is
still challenging, due to the poor image quality, high variability in LA
shapes, and unclear LA boundary. Though deep learning-based methods can provide
promising LA segmentation results, they often generalize poorly to unseen
domains, such as data from different scanners and/or sites. In this work, we
collect 210 LGE MRIs from different centers with different levels of image
quality. To evaluate the domain generalization ability of models on the LA
segmentation task, we employ four commonly used semantic segmentation networks
for the LA segmentation from multi-center LGE MRIs. Besides, we investigate
three domain generalization strategies, i.e., histogram matching, mutual
information based disentangled representation, and random style transfer, where
a simple histogram matching is proved to be most effective.
Related papers
- SegmentAnyBone: A Universal Model that Segments Any Bone at Any Location
on MRI [13.912230325828943]
We propose a versatile, publicly available deep-learning model for bone segmentation in MRI across multiple standard MRI locations.
The proposed model can operate in two modes: fully automated segmentation and prompt-based segmentation.
Our contributions include (1) collecting and annotating a new MRI dataset across various MRI protocols, encompassing over 300 annotated volumes and 8485 annotated slices across diverse anatomic regions.
arXiv Detail & Related papers (2024-01-23T18:59:25Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Multi-center, multi-vendor automated segmentation of left ventricular
anatomy in contrast-enhanced MRI [0.7276738839986918]
This work investigates for the first time multi-center and multi-vendor LV segmentation in LGE-MRI.
Data augmentation to artificially augment the image variability in the training sample, image harmonization to align the distributions of LGE-MRI images across centers, and transfer learning to adjust existing single-center models to unseen images from new clinical sites.
arXiv Detail & Related papers (2021-10-14T13:44:59Z) - Right Ventricular Segmentation from Short- and Long-Axis MRIs via
Information Transition [13.292060121301544]
We propose an automatic RV segmentation framework, where the information from long-axis (LA) views is utilized to assist the segmentation of short-axis (SA) views.
Specifically, we employed the transformed segmentation from LA views as a prior information, to extract the ROI from SA views for better segmentation.
Our experimental results show that including LA views can be effective to improve the accuracy of the SA segmentation.
arXiv Detail & Related papers (2021-09-05T21:39:27Z) - Medical Image Analysis on Left Atrial LGE MRI for Atrial Fibrillation
Studies: A Review [18.22326892162902]
Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is commonly used to visualize and quantify left atrial (LA) scars.
This paper aims to provide a systematic review on computing methods for LA cavity, wall, scar and ablation gap segmentation and quantification from LGE MRI.
arXiv Detail & Related papers (2021-06-18T01:31:06Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.