Enhanced MRI Representation via Cross-series Masking
- URL: http://arxiv.org/abs/2412.07387v1
- Date: Tue, 10 Dec 2024 10:32:09 GMT
- Title: Enhanced MRI Representation via Cross-series Masking
- Authors: Churan Wang, Fei Gao, Lijun Yan, Siwen Wang, Yizhou Yu, Yizhou Wang,
- Abstract summary: Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner.<n>Method achieves state-of-the-art performance on both public and in-house datasets.
- Score: 48.09478307927716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) is indispensable for diagnosing and planning treatment in various medical conditions due to its ability to produce multi-series images that reveal different tissue characteristics. However, integrating these diverse series to form a coherent analysis presents significant challenges, such as differing spatial resolutions and contrast patterns meanwhile requiring extensive annotated data, which is scarce in clinical practice. Due to these issues, we introduce a novel Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner. Specifically, CSM commences by randomly sampling a subset of regions and series, which are then strategically masked. In the training process, the cross-series representation is learned by utilizing the unmasked data to reconstruct the masked portions. This process not only integrates information across different series but also facilitates the ability to model both intra-series and inter-series correlations and complementarities. With the learned representation, the downstream tasks like segmentation and classification are also enhanced. Taking brain tissue segmentation, breast tumor benign/malignant classification, and prostate cancer diagnosis as examples, our method achieves state-of-the-art performance on both public and in-house datasets.
Related papers
- Clinical Inspired MRI Lesion Segmentation [18.265186077850874]
We propose a residual fusion method to learn subsequence representation for MRI lesion segmentation.
Specifically, we iteratively and adaptively fuse features from pre- and post-contrast sequences at multiple resolutions.
Our method achieves state-of-the-art performances on BraTS2023 dataset for brain tumor segmentation and our in-house breast MRI dataset for breast lesion segmentation.
arXiv Detail & Related papers (2025-02-22T01:37:35Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.
This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
We introduce MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on clinical scans.
Our approach includes fine-tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss.
We also investigate using zero-shot segmentation labels within a weakly supervised paradigm to enhance segmentation quality further.
arXiv Detail & Related papers (2024-09-28T23:10:37Z) - 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
We propose a novel slice-based latent diffusion architecture to address the complexities of volumetric data generation.
This approach extends the joint distribution modeling of medical images and their associated masks, allowing a simultaneous generation of both under data-scarce regimes.
Our architecture can be conditioned by tumor characteristics, including size, shape, and relative position, thereby providing a diverse range of tumor variations.
arXiv Detail & Related papers (2024-06-08T09:53:45Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - MV-Swin-T: Mammogram Classification with Multi-view Swin Transformer [0.257133335028485]
We propose an innovative multi-view network based on transformers to address challenges in mammographic image classification.
Our approach introduces a novel shifted window-based dynamic attention block, facilitating the effective integration of multi-view information.
arXiv Detail & Related papers (2024-02-26T04:41:04Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.