論文の概要: Scalable Quasi-Bayesian Inference for Instrumental Variable Regression
- arxiv url: http://arxiv.org/abs/2106.08750v1
- Date: Wed, 16 Jun 2021 12:52:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 01:49:09.626296
- Title: Scalable Quasi-Bayesian Inference for Instrumental Variable Regression
- Title(参考訳): インストゥルメンタル変数回帰のためのスケーラブルな準ベイズ推論
- Authors: Ziyu Wang, Yuhao Zhou, Tongzheng Ren, Jun Zhu
- Abstract要約: 本稿では,最近開発されたカーネル化IVモデルに基づいて,拡張性のある準ベイズ的回帰法を提案する。
提案手法では,データ生成プロセスに関する追加の仮定を必要とせず,対応する点推定法に匹敵する時間コストで,スケーラブルな近似推論アルゴリズムを導出する。
- 参考スコア(独自算出の注目度): 40.33643110066981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have witnessed an upsurge of interest in employing flexible
machine learning models for instrumental variable (IV) regression, but the
development of uncertainty quantification methodology is still lacking. In this
work we present a scalable quasi-Bayesian procedure for IV regression, building
upon the recently developed kernelized IV models. Contrary to Bayesian modeling
for IV, our approach does not require additional assumptions on the data
generating process, and leads to a scalable approximate inference algorithm
with time cost comparable to the corresponding point estimation methods. Our
algorithm can be further extended to work with neural network models. We
analyze the theoretical properties of the proposed quasi-posterior, and
demonstrate through empirical evaluation the competitive performance of our
method.
- Abstract(参考訳): 近年、インストゥルメンタル変数(iv)回帰にフレキシブルな機械学習モデルを採用することへの関心が高まっているが、不確実性定量化手法の開発はまだ不十分である。
本稿では,最近開発されたカーネル化ivモデルに基づいて,iv回帰のためのスケーラブルな準ベイズ手順を提案する。
IV のベイズ的モデリングとは対照的に,本手法ではデータ生成プロセスに関する追加の仮定を必要とせず,対応する点推定法に匹敵する時間コストで,スケーラブルな近似推論アルゴリズムを導出する。
我々のアルゴリズムはニューラルネットワークモデルにさらに拡張することができる。
提案手法の理論的特性を解析し,提案手法の競合性能を実証的に評価した。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Regularized DeepIV with Model Selection [72.17508967124081]
正規化DeepIV(RDIV)回帰は最小ノルムIV解に収束することができる。
我々の手法は現在の最先端の収束率と一致している。
論文 参考訳(メタデータ) (2024-03-07T05:38:56Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
本研究で得られたCGDIALOGコーパスに基づくオープンドメイン応答生成モデルのスプリアス相関に関する最初の研究を行った。
因果探索アルゴリズムに着想を得て,反応生成モデルの学習と推論のための新しいモデル非依存手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T06:33:48Z) - New Machine Learning Techniques for Simulation-Based Inference:
InferoStatic Nets, Kernel Score Estimation, and Kernel Likelihood Ratio
Estimation [4.415977307120616]
確率密度を標本化できるが直接計算できない場合のスコアと確率比推定器をモデル化する機械学習手法を提案する。
我々はそれぞれKernel Score Estimation (KSE) と Kernel Likelihood Ratio Estimation (KLRE) と呼ばれる新しい戦略を導入し、シミュレーションデータからスコアと確率比関数を学習する。
論文 参考訳(メタデータ) (2022-10-04T15:22:56Z) - Fast Instrument Learning with Faster Rates [34.271656281468175]
ブラックボックスとしてアクセスされるカーネル化IV法と任意の適応回帰アルゴリズムを組み合わせた簡単なアルゴリズムを提案する。
提案アルゴリズムは,高コストのミニマックス最適化手法を回避しつつ,より高速な収束と,情報伝達性のある潜在特徴の次元性に適応する。
論文 参考訳(メタデータ) (2022-05-22T08:06:54Z) - Learning new physics efficiently with nonparametric methods [11.970219534238444]
モデルに依存しない新しい物理探索のための機械学習手法を提案する。
対応するアルゴリズムは、最近のカーネルメソッドの大規模実装によって実現されている。
トレーニング時間や計算資源の観点から、ニューラルネットワークの実装と比較して、我々のアプローチは劇的なアドバンテージがあることが示される。
論文 参考訳(メタデータ) (2022-04-05T16:17:59Z) - Measuring and Reducing Model Update Regression in Structured Prediction
for NLP [31.86240946966003]
後方互換性は、新しいモデルが前者によって正しく処理されたケースに回帰しないことを要求する。
本研究は、構造化予測タスクにおける更新回帰をモデル化する。
本稿では,構造化出力の特性を考慮し,単純かつ効果的なバックワード・コングルエント・リグレード(BCR)を提案する。
論文 参考訳(メタデータ) (2022-02-07T07:04:54Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
本稿では,最大安定過程からパラメータを推定する方法を示す。
モデルシミュレーションのデータを入力として使用し,統計的パラメータを学習するために深層ニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2021-07-29T21:59:48Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。