Data Augmentation for Graph Convolutional Network on Semi-Supervised
Classification
- URL: http://arxiv.org/abs/2106.08848v1
- Date: Wed, 16 Jun 2021 15:13:51 GMT
- Title: Data Augmentation for Graph Convolutional Network on Semi-Supervised
Classification
- Authors: Zhengzheng Tang, Ziyue Qiao, Xuehai Hong, Yang Wang, Fayaz Ali
Dharejo, Yuanchun Zhou, Yi Du
- Abstract summary: We study the problem of graph data augmentation for Graph Convolutional Network (GCN)
Specifically, we conduct cosine similarity based cross operation on the original features to create new graph features, including new node attributes.
We also propose an attentional integrating model to weighted sum the hidden node embeddings encoded by these GCNs into the final node embeddings.
- Score: 6.619370466850894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation aims to generate new and synthetic features from the
original data, which can identify a better representation of data and improve
the performance and generalizability of downstream tasks. However, data
augmentation for graph-based models remains a challenging problem, as graph
data is more complex than traditional data, which consists of two features with
different properties: graph topology and node attributes. In this paper, we
study the problem of graph data augmentation for Graph Convolutional Network
(GCN) in the context of improving the node embeddings for semi-supervised node
classification. Specifically, we conduct cosine similarity based cross
operation on the original features to create new graph features, including new
node attributes and new graph topologies, and we combine them as new pairwise
inputs for specific GCNs. Then, we propose an attentional integrating model to
weighted sum the hidden node embeddings encoded by these GCNs into the final
node embeddings. We also conduct a disparity constraint on these hidden node
embeddings when training to ensure that non-redundant information is captured
from different features. Experimental results on five real-world datasets show
that our method improves the classification accuracy with a clear margin (+2.5%
- +84.2%) than the original GCN model.
Related papers
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
We decouple the node feature aggregation step and depth of graph neural network, and empirically analyze how different aggregated features play a role in prediction performance.
We show that not all features generated via aggregation steps are useful, and often using these less informative features can be detrimental to the performance of the GNN model.
We present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model achieves comparable or even higher accuracy than state-of-the-art GNN models.
arXiv Detail & Related papers (2021-11-12T14:53:22Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
Graph Neural Networks (GNNs) have led to state-of-the-art performance on a variety of machine learning tasks such as recommendation, node classification and link prediction.
Most existing GNN models exploit a single type of aggregator to aggregate neighboring nodes information.
We propose a novel graph neural network architecture, Graph Attention & Interaction Network (GAIN), for inductive learning on graphs.
arXiv Detail & Related papers (2020-11-03T00:20:24Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.