Nonparametric Empirical Bayes Estimation and Testing for Sparse and
Heteroscedastic Signals
- URL: http://arxiv.org/abs/2106.08881v1
- Date: Wed, 16 Jun 2021 15:55:44 GMT
- Title: Nonparametric Empirical Bayes Estimation and Testing for Sparse and
Heteroscedastic Signals
- Authors: Junhui Cai, Xu Han, Ya'acov Ritov, Linda Zhao
- Abstract summary: Large-scale modern data often involves estimation and testing for high-dimensional unknown parameters.
It is desirable to identify the sparse signals, the needles in the haystack'', with accuracy and false discovery control.
We propose a novel Spike-and-Nonparametric mixture prior (SNP) -- a spike to promote the sparsity and a nonparametric structure to capture signals.
- Score: 5.715675926089834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale modern data often involves estimation and testing for
high-dimensional unknown parameters. It is desirable to identify the sparse
signals, ``the needles in the haystack'', with accuracy and false discovery
control. However, the unprecedented complexity and heterogeneity in modern data
structure require new machine learning tools to effectively exploit
commonalities and to robustly adjust for both sparsity and heterogeneity. In
addition, estimates for high-dimensional parameters often lack uncertainty
quantification. In this paper, we propose a novel Spike-and-Nonparametric
mixture prior (SNP) -- a spike to promote the sparsity and a nonparametric
structure to capture signals. In contrast to the state-of-the-art methods, the
proposed methods solve the estimation and testing problem at once with several
merits: 1) an accurate sparsity estimation; 2) point estimates with
shrinkage/soft-thresholding property; 3) credible intervals for uncertainty
quantification; 4) an optimal multiple testing procedure that controls false
discovery rate. Our method exhibits promising empirical performance on both
simulated data and a gene expression case study.
Related papers
- Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
In safety-critical applications of machine learning, it is often desirable for a model to be conservative.
We propose the Data-Driven Confidence Minimization framework, which minimizes confidence on an uncertainty dataset.
arXiv Detail & Related papers (2023-06-08T07:05:36Z) - Bootstrapped Edge Count Tests for Nonparametric Two-Sample Inference
Under Heterogeneity [5.8010446129208155]
We develop a new nonparametric testing procedure that accurately detects differences between the two samples.
A comprehensive simulation study and an application to detecting user behaviors in online games demonstrates the excellent non-asymptotic performance of the proposed test.
arXiv Detail & Related papers (2023-04-26T22:25:44Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
We show empirical success in terms of accuracy and robustness to noise with bootstrapping-based sequential thresholding least-squares estimator.
We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate.
arXiv Detail & Related papers (2023-01-30T04:07:59Z) - Mutual Wasserstein Discrepancy Minimization for Sequential
Recommendation [82.0801585843835]
We propose a novel self-supervised learning framework based on Mutual WasserStein discrepancy minimization MStein for the sequential recommendation.
We also propose a novel contrastive learning loss based on Wasserstein Discrepancy Measurement.
arXiv Detail & Related papers (2023-01-28T13:38:48Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Statistics and Deep Learning-based Hybrid Model for Interpretable
Anomaly Detection [0.0]
Hybrid methods have been shown to outperform pure statistical and pure deep learning methods at both forecasting tasks.
MES-LSTM is an interpretable anomaly detection model that overcomes these challenges.
arXiv Detail & Related papers (2022-02-25T14:17:03Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
We investigate how the parametrization of the probabilities in discriminative classifiers affects the uncertainty estimates.
We show that one-vs-all formulations can improve calibration on image classification tasks.
arXiv Detail & Related papers (2020-07-10T01:55:02Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Nonparametric Inference under B-bits Quantization [5.958064620718292]
We propose a nonparametric testing procedure based on samples quantized to $B$ bits.
In particular, we show that if $B$ exceeds a certain threshold, the proposed nonparametric testing procedure achieves the classical minimax rate of testing.
arXiv Detail & Related papers (2019-01-24T18:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.