Statistics and Deep Learning-based Hybrid Model for Interpretable
Anomaly Detection
- URL: http://arxiv.org/abs/2202.12720v1
- Date: Fri, 25 Feb 2022 14:17:03 GMT
- Title: Statistics and Deep Learning-based Hybrid Model for Interpretable
Anomaly Detection
- Authors: Thabang Mathonsi and Terence L van Zyl
- Abstract summary: Hybrid methods have been shown to outperform pure statistical and pure deep learning methods at both forecasting tasks.
MES-LSTM is an interpretable anomaly detection model that overcomes these challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Hybrid methods have been shown to outperform pure statistical and pure deep
learning methods at both forecasting tasks, and at quantifying the uncertainty
associated with those forecasts (prediction intervals). One example is
Multivariate Exponential Smoothing Long Short-Term Memory (MES-LSTM), a hybrid
between a multivariate statistical forecasting model and a Recurrent Neural
Network variant, Long Short-Term Memory. It has also been shown that a model
that ($i$) produces accurate forecasts and ($ii$) is able to quantify the
associated predictive uncertainty satisfactorily, can be successfully adapted
to a model suitable for anomaly detection tasks. With the increasing ubiquity
of multivariate data and new application domains, there have been numerous
anomaly detection methods proposed in recent years. The proposed methods have
largely focused on deep learning techniques, which are prone to suffer from
challenges such as ($i$) large sets of parameters that may be computationally
intensive to tune, $(ii)$ returning too many false positives rendering the
techniques impractical for use, $(iii)$ requiring labeled datasets for training
which are often not prevalent in real life, and ($iv$) understanding of the
root causes of anomaly occurrences inhibited by the predominantly black-box
nature of deep learning methods. In this article, an extension of MES-LSTM is
presented, an interpretable anomaly detection model that overcomes these
challenges. With a focus on renewable energy generation as an application
domain, the proposed approach is benchmarked against the state-of-the-art. The
findings are that MES-LSTM anomaly detector is at least competitive to the
benchmarks at anomaly detection tasks, and less prone to learning from spurious
effects than the benchmarks, thus making it more reliable at root cause
discovery and explanation.
Related papers
- MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
arXiv Detail & Related papers (2024-09-03T08:01:01Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
We show empirical success in terms of accuracy and robustness to noise with bootstrapping-based sequential thresholding least-squares estimator.
We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate.
arXiv Detail & Related papers (2023-01-30T04:07:59Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Learning Mixtures of Linear Dynamical Systems [94.49754087817931]
We develop a two-stage meta-algorithm to efficiently recover each ground-truth LDS model up to error $tildeO(sqrtd/T)$.
We validate our theoretical studies with numerical experiments, confirming the efficacy of the proposed algorithm.
arXiv Detail & Related papers (2022-01-26T22:26:01Z) - A Statistics and Deep Learning Hybrid Method for Multivariate Time
Series Forecasting and Mortality Modeling [0.0]
Exponential Smoothing Recurrent Neural Network (ES-RNN) is a hybrid between a statistical forecasting model and a recurrent neural network variant.
ES-RNN achieves a 9.4% improvement in absolute error in the Makridakis-4 Forecasting Competition.
arXiv Detail & Related papers (2021-12-16T04:44:19Z) - Multivariate Anomaly Detection based on Prediction Intervals Constructed
using Deep Learning [0.0]
We benchmark our approach against the oft-preferred well-established statistical models.
We focus on three deep learning architectures, namely, cascaded neural networks, reservoir computing and long short-term memory recurrent neural networks.
arXiv Detail & Related papers (2021-10-07T12:34:31Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.