論文の概要: An Imprecise SHAP as a Tool for Explaining the Class Probability
Distributions under Limited Training Data
- arxiv url: http://arxiv.org/abs/2106.09111v1
- Date: Wed, 16 Jun 2021 20:30:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 16:08:23.363383
- Title: An Imprecise SHAP as a Tool for Explaining the Class Probability
Distributions under Limited Training Data
- Title(参考訳): 限定学習データに基づく授業確率分布記述ツールとしての不正確SHAP
- Authors: Lev V. Utkin and Andrei V. Konstantinov and Kirill A. Vishniakov
- Abstract要約: クラス確率分布が不正確で分布の集合で表される場合に、不正確なSHAPを提案する。
不正確なSHAPの背後にある最初のアイデアは、機能の限界貢献を計算するための新しいアプローチである。
第二のアイデアは、間隔値シャプリー値の計算と縮小に対する一般的なアプローチを考える試みである。
- 参考スコア(独自算出の注目度): 5.8010446129208155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most popular methods of the machine learning prediction
explanation is the SHapley Additive exPlanations method (SHAP). An imprecise
SHAP as a modification of the original SHAP is proposed for cases when the
class probability distributions are imprecise and represented by sets of
distributions. The first idea behind the imprecise SHAP is a new approach for
computing the marginal contribution of a feature, which fulfils the important
efficiency property of Shapley values. The second idea is an attempt to
consider a general approach to calculating and reducing interval-valued Shapley
values, which is similar to the idea of reachable probability intervals in the
imprecise probability theory. A simple special implementation of the general
approach in the form of linear optimization problems is proposed, which is
based on using the Kolmogorov-Smirnov distance and imprecise contamination
models. Numerical examples with synthetic and real data illustrate the
imprecise SHAP.
- Abstract(参考訳): 機械学習予測の最も一般的な方法の1つは、SHAP (SHapley Additive exPlanations Method) である。
クラス確率分布が不正確で分布の集合で表される場合に、元のSHAPの修正としての不正確なSHAPを提案する。
不正確なSHAPの背後にある最初のアイデアは、シャプリー値の重要な効率性を満たす特徴の限界寄与を計算するための新しいアプローチである。
第二のアイデアは、不正確な確率論における到達可能な確率間隔の概念と類似した、区間値のシャプリー値の計算と減少に関する一般的なアプローチを考えることである。
コルモゴロフ-スミルノフ距離と不正確な汚染モデルを用いた線形最適化問題の形での一般手法の簡単な特殊実装を提案する。
合成および実データによる数値例は不正確なSHAPを示している。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Probabilistically Plausible Counterfactual Explanations with Normalizing Flows [2.675793767640172]
本稿では,確率論的に妥当な反事実的説明を生成する新しい手法であるPPCEFを提案する。
本手法は, パラメータ分布の特定の族を仮定することなく, 明示密度関数を直接最適化することにより, 精度を向上する。
PPCEFは、機械学習モデルを解釈し、公正性、説明責任、AIシステムの信頼を改善するための強力なツールである。
論文 参考訳(メタデータ) (2024-05-27T20:24:03Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
ラベルなしデータの分散に関する前提を前提としない、高度に適応可能なフレームワークをSimProとして提案する。
我々のフレームワークは確率モデルに基づいており、期待最大化アルゴリズムを革新的に洗練する。
本手法は,様々なベンチマークやデータ分散シナリオにまたがる一貫した最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-21T03:39:04Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
シェープ価値は、モデル決定プロセスの解明のための機械学習(ML)の基礎ツールとして現れている。
本稿では,Shapley値の計算を大幅に単純化し,単一のフォワードパスしか必要としない,新しい自己説明手法を提案する。
論文 参考訳(メタデータ) (2024-02-06T18:09:05Z) - Provably Stable Feature Rankings with SHAP and LIME [3.8642937395065124]
最も重要な特徴を高い確率で正しくランク付けする属性法を考案する。
SHAP と LIME の効率的なサンプリングアルゴリズムを導入し,K$ の高階特徴が適切に順序付け可能であることを保証した。
論文 参考訳(メタデータ) (2024-01-28T23:14:51Z) - DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation [23.646508094051768]
我々は、データセットのバリュエーションの問題、すなわち、インクリメンタルゲインを定量化する問題を考える。
Shapleyの値は、その正式な公理的正当化のためにデータセットのバリュエーションを実行する自然なツールである。
本稿では,離散一様分布下での予測として表現される離散一様シャプリーと呼ばれる新しい近似を提案する。
論文 参考訳(メタデータ) (2023-06-03T10:22:50Z) - Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process
Models [15.715453687736028]
本稿では,GPの完全な解析的共分散構造を利用するガウス過程 (GP) を説明するための新しい手法を提案する。
提案手法は,協調ゲームに拡張されたShapley値の一般的な解概念に基づいて,ランダム変数である説明を行う。
提案手法を用いて生成したGP説明は,Shapley値と類似の公理を満足し,特徴量やデータ観測にまたがるトラクタブルな共分散関数を有する。
論文 参考訳(メタデータ) (2023-05-24T13:59:03Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。