論文の概要: Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process
Models
- arxiv url: http://arxiv.org/abs/2305.15167v1
- Date: Wed, 24 May 2023 13:59:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 15:28:56.279060
- Title: Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process
Models
- Title(参考訳): 不確かさを説明する:ガウス過程モデルのための確率的シェープ値
- Authors: Siu Lun Chau and Krikamol Muandet and Dino Sejdinovic
- Abstract要約: 本稿では,GPの完全な解析的共分散構造を利用するガウス過程 (GP) を説明するための新しい手法を提案する。
提案手法は,協調ゲームに拡張されたShapley値の一般的な解概念に基づいて,ランダム変数である説明を行う。
提案手法を用いて生成したGP説明は,Shapley値と類似の公理を満足し,特徴量やデータ観測にまたがるトラクタブルな共分散関数を有する。
- 参考スコア(独自算出の注目度): 15.715453687736028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach for explaining Gaussian processes (GPs) that can
utilize the full analytical covariance structure present in GPs. Our method is
based on the popular solution concept of Shapley values extended to stochastic
cooperative games, resulting in explanations that are random variables. The GP
explanations generated using our approach satisfy similar favorable axioms to
standard Shapley values and possess a tractable covariance function across
features and data observations. This covariance allows for quantifying
explanation uncertainties and studying the statistical dependencies between
explanations. We further extend our framework to the problem of predictive
explanation, and propose a Shapley prior over the explanation function to
predict Shapley values for new data based on previously computed ones. Our
extensive illustrations demonstrate the effectiveness of the proposed approach.
- Abstract(参考訳): 本稿では,GPの完全解析的共分散構造を利用するガウス過程 (GP) を説明するための新しい手法を提案する。
本手法は確率的協調ゲームに拡張されたShapley値の一般的な解の概念に基づいており、その結果、ランダム変数である説明が得られる。
提案手法を用いて生成したGP説明は,Shapley値と類似の公理を満足し,特徴量やデータ観測値の共分散関数を有する。
この共分散により説明の不確実性が定量化され、説明間の統計的依存性が研究される。
さらに,提案手法を予測説明問題に拡張し,説明関数に先立ってシェープリー関数を提案し,新たに計算したデータに基づいてシェープリー値を予測する。
提案手法の有効性を概説する。
関連論文リスト
- Improving the Sampling Strategy in KernelSHAP [0.8057006406834466]
KernelSHAPフレームワークは、重み付けされた条件付き期待値のサンプルサブセットを用いて、Shapley値の近似を可能にする。
本稿では,現在最先端戦略における重みの分散を低減するための安定化手法,サンプルサブセットに基づいてShapleyカーネル重みを補正する新しい重み付け方式,および重要なサブセットを包含して修正されたShapleyカーネル重みと統合する簡単な戦略を提案する。
論文 参考訳(メタデータ) (2024-10-07T10:02:31Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Recursive Monte Carlo and Variational Inference with Auxiliary Variables [64.25762042361839]
再帰的補助変数推論(RAVI)はフレキシブルな提案を利用するための新しいフレームワークである。
RAVIは、表現力のある表現力のある家族を推論するためのいくつかの既存の手法を一般化し、統一する。
RAVIの設計枠組みと定理を,SalimansらによるMarkov Chain Variational Inferenceを用いて解析し,改良することにより示す。
論文 参考訳(メタデータ) (2022-03-05T23:52:40Z) - An Imprecise SHAP as a Tool for Explaining the Class Probability
Distributions under Limited Training Data [5.8010446129208155]
クラス確率分布が不正確で分布の集合で表される場合に、不正確なSHAPを提案する。
不正確なSHAPの背後にある最初のアイデアは、機能の限界貢献を計算するための新しいアプローチである。
第二のアイデアは、間隔値シャプリー値の計算と縮小に対する一般的なアプローチを考える試みである。
論文 参考訳(メタデータ) (2021-06-16T20:30:26Z) - Explaining predictive models using Shapley values and non-parametric
vine copulas [2.6774008509840996]
特徴間の依存をモデル化するための2つの新しいアプローチを提案する。
提案手法の性能はシミュレーションされたデータセットと実データセットで評価される。
実験により、ブドウのコプラアプローチは、ライバルよりも真のシャプリー値により正確な近似を与えることが示された。
論文 参考訳(メタデータ) (2021-02-12T09:43:28Z) - Explaining predictive models with mixed features using Shapley values
and conditional inference trees [1.8065361710947976]
シェープな値は、あらゆる種類の機械学習モデルからの予測を説明するためのサウンドメソッドとして際立っている。
本研究では,条件付き推論木を用いた特徴の依存構造をモデル化し,混合依存的特徴を説明する手法を提案する。
論文 参考訳(メタデータ) (2020-07-02T11:25:45Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - Rigorous Explanation of Inference on Probabilistic Graphical Models [17.96228289921288]
本稿では、Shapley値の分解性、計算用MRFの構造、BP推論の反復性を統合するためにGraphShapleyを提案する。
9つのグラフ上では、GraphShapleyが合理的で実用的な説明を提供することを示す。
論文 参考訳(メタデータ) (2020-04-21T14:57:12Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。