論文の概要: A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data
Streams
- arxiv url: http://arxiv.org/abs/2106.09170v1
- Date: Wed, 16 Jun 2021 23:14:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 15:46:26.293828
- Title: A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data
Streams
- Title(参考訳): 遅延部分ラベル付きデータストリームの半教師付き学習に関する調査
- Authors: Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh
Huong Le Nguyen, Albert Bifet
- Abstract要約: 本調査は, 半教師付き環境で, 不正なデータを利用する手法に特に注意を払っている。
完全教師付き手法と半教師付き手法の両方に影響を及ぼす遅延ラベル問題について議論する。
- 参考スコア(独自算出の注目度): 10.370629574634092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlabelled data appear in many domains and are particularly relevant to
streaming applications, where even though data is abundant, labelled data is
rare. To address the learning problems associated with such data, one can
ignore the unlabelled data and focus only on the labelled data (supervised
learning); use the labelled data and attempt to leverage the unlabelled data
(semi-supervised learning); or assume some labels will be available on request
(active learning). The first approach is the simplest, yet the amount of
labelled data available will limit the predictive performance. The second
relies on finding and exploiting the underlying characteristics of the data
distribution. The third depends on an external agent to provide the required
labels in a timely fashion. This survey pays special attention to methods that
leverage unlabelled data in a semi-supervised setting. We also discuss the
delayed labelling issue, which impacts both fully supervised and
semi-supervised methods. We propose a unified problem setting, discuss the
learning guarantees and existing methods, explain the differences between
related problem settings. Finally, we review the current benchmarking practices
and propose adaptations to enhance them.
- Abstract(参考訳): 不正なデータは、多くのドメインに現れ、特にストリーミングアプリケーションに関係しており、データが豊富であるにもかかわらずラベル付きデータはまれである。
このようなデータに関連する学習問題に対処するために、ラベル付きデータのみにフォーカスする(教師付き学習)、ラベル付きデータを使用し、ラベル付きデータを活用する(半教師付き学習)、あるいはいくつかのラベルが要求に応じて利用可能になると仮定する(アクティブ学習)。
最初のアプローチは最も単純なものですが、ラベル付きデータの量は予測性能を制限します。
第2の方法は、データ分散の基盤となる特性の発見と活用に依存している。
3つ目は、必要なラベルをタイムリーに提供するための外部エージェントに依存します。
本調査は, 半教師付き環境で, 不正なデータを利用する手法に特に注意を払っている。
また,完全な教師付き手法と半教師付き手法の両方に影響を与える遅延ラベル問題についても論じる。
本稿では,統一的な問題設定を提案し,学習保証と既存の方法について議論し,関連する問題設定の違いを説明する。
最後に,現在のベンチマーク手法を見直し,それらを強化するための適応法を提案する。
関連論文リスト
- Deep Active Learning with Manifold-preserving Trajectory Sampling [2.0717982775472206]
アクティブラーニング(AL)は、アノテーション(ラベル付け)のためのラベルなしデータの選択を最適化するための方法である
既存のディープALメソッドは、間違いなく、ラベル付きデータによって引き起こされるバイアスに悩まされ、ALコンテキストにおけるラベルなしデータよりもはるかに低い割合で処理される。
我々は,より正確な多様体を表現するためにラベル付きデータから学習した特徴空間を強制することを目的とした,manifold-Preserving Trajectory Smpling (MPTS) という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T03:04:09Z) - FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) は、ラベル付きデータが極めて少ない豊富なラベル付きデータを活用する効果的な方法である。
ほとんどのSSLメソッドは、通常、異なるデータ変換間のインスタンス単位の一貫性に基づいている。
本研究では,2つのデータセット間の一貫した学習性能を確保するために,クロスシャープネス尺度を最小化するFlatMatchを提案する。
論文 参考訳(メタデータ) (2023-10-25T06:57:59Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
本稿では,トレーニング中にノイズラベル付きおよび未処理データを受け入れる条件付き画像生成フレームワークを提案する。
本稿では,ラベルのないデータに新たなラベルを割り当てながら,逆行訓練にインスタンスワイドを割り当てるソフトカリキュラム学習を提案する。
実験により,本手法は,定量および定性性能の両面において,既存の半教師付き・ラベル付きロバストな手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-17T08:31:59Z) - Are labels informative in semi-supervised learning? -- Estimating and
leveraging the missing-data mechanism [4.675583319625962]
半教師付き学習は、ラベルのないデータを利用して機械学習モデルを改善するための強力な技術である。
これは、あるクラスが他のクラスよりもラベル付けされる可能性が高い場合に発生する、情報的ラベルの存在に影響される可能性がある。
本稿では,データ不足のメカニズムを推定し,逆確率重み付けを用いてSSLアルゴリズムを劣化させることにより,この問題に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-15T09:18:46Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Data Consistency for Weakly Supervised Learning [15.365232702938677]
機械学習モデルのトレーニングには、大量の人間が注釈付けしたデータを使用する。
本稿では、雑音ラベル、すなわち弱い信号を処理する新しい弱監督アルゴリズムを提案する。
本研究では,テキストと画像の分類作業において,最先端の弱い監督手法を著しく上回っていることを示す。
論文 参考訳(メタデータ) (2022-02-08T16:48:19Z) - OpenCoS: Contrastive Semi-supervised Learning for Handling Open-set
Unlabeled Data [65.19205979542305]
ラベル付けされていないデータには、実際にはクラス外のサンプルが含まれる。
OpenCoSは、このリアルな半教師付き学習シナリオを扱う方法である。
論文 参考訳(メタデータ) (2021-06-29T06:10:05Z) - Instance Correction for Learning with Open-set Noisy Labels [145.06552420999986]
オープンセットノイズラベルの処理にはサンプル選択方式を用いる。
廃棄されたデータは間違ったラベルで書かれており、トレーニングには参加していない。
廃棄されたデータのインスタンスを変更して、廃棄されたデータの予測をラベルに一致させる。
論文 参考訳(メタデータ) (2021-06-01T13:05:55Z) - A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels [49.990938653249415]
本研究では,初期疑似ラベルを雑音ラベルデータとして用いる非ラベルデータに割り当て,雑音ラベルデータを用いて深層ニューラルネットワークを訓練する手法を提案する。
実験の結果,提案手法は,いくつかのベンチマークデータセットにおいて,最先端の手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-03-08T11:46:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。