論文の概要: Physics-informed CoKriging model of a redox flow battery
- arxiv url: http://arxiv.org/abs/2106.09188v1
- Date: Thu, 17 Jun 2021 00:49:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-19 06:56:40.874679
- Title: Physics-informed CoKriging model of a redox flow battery
- Title(参考訳): レドックスフローバッテリの物理モデルによるcokrigingモデル
- Authors: Amanda A. Howard, Alexandre M. Tartakovsky
- Abstract要約: レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Redox flow batteries (RFBs) offer the capability to store large amounts of
energy cheaply and efficiently, however, there is a need for fast and accurate
models of the charge-discharge curve of a RFB to potentially improve the
battery capacity and performance. We develop a multifidelity model for
predicting the charge-discharge curve of a RFB. In the multifidelity model, we
use the Physics-informed CoKriging (CoPhIK) machine learning method that is
trained on experimental data and constrained by the so-called
"zero-dimensional" physics-based model. Here we demonstrate that the model
shows good agreement with experimental results and significant improvements
over existing zero-dimensional models. We show that the proposed model is
robust as it is not sensitive to the input parameters in the zero-dimensional
model. We also show that only a small amount of high-fidelity experimental
datasets are needed for accurate predictions for the range of considered input
parameters, which include current density, flow rate, and initial
concentrations.
- Abstract(参考訳): レドックスフローバッテリ(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する能力を提供するが、バッテリー容量と性能を向上させるために、RFBの充電曲線の高速かつ正確なモデルが必要である。
RFBの電荷分配曲線を予測する多相モデルを開発した。
多忠実度モデルでは、実験データに基づいて訓練され、いわゆる「ゼロ次元」物理モデルによって制約される物理インフォームドCoKriging(CoPhIK)機械学習手法を用いる。
本稿では,実験結果と良好に一致し,既存のゼロ次元モデルと比較して有意な改善を示す。
提案モデルは,ゼロ次元モデルにおいて入力パラメータに敏感ではないため,ロバストであることを示す。
また,現在の密度,流量,初期濃度を含む入力パラメータの範囲を正確に予測するためには,少量の高忠実度実験データセットが必要であることも明らかにした。
関連論文リスト
- Generating Synthetic Net Load Data with Physics-informed Diffusion Model [0.8848340429852071]
条件付き認知ニューラルネットワークは、拡散モデルの遷移核のパラメータを共同で訓練するように設計されている。
総合的な評価指標を用いて、生成された合成ネット負荷データの正確性と多様性を評価する。
論文 参考訳(メタデータ) (2024-06-04T02:50:19Z) - A Physics-informed Diffusion Model for High-fidelity Flow Field
Reconstruction [0.0]
本研究では,高忠実度データのみを使用する拡散モデルを提案する。
異なる構成で、本モデルでは、正規の低忠実度サンプルまたはスパース測定サンプルから高忠実度データを再構成することができる。
本モデルでは, 異なる入力源に基づく2次元乱流の正確な再構成結果が得られるが, 再学習は行わない。
論文 参考訳(メタデータ) (2022-11-26T23:14:18Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
物理制約付き深層学習モデルを構築し, 多相多孔質体における多相流の解法について検討した。
モデルは物理に基づくシミュレーションデータから訓練され、物理過程をエミュレートする。
このモデルは物理シミュレーションと比較して1400倍のスピードアップで予測を行う。
論文 参考訳(メタデータ) (2021-04-30T02:15:01Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Robust Data-Driven Error Compensation for a Battery Model [0.0]
今日の大量のバッテリデータは、より正確で信頼性の高いシミュレーションにはまだ使われていません。
データ駆動型エラーモデルを導入し、既存の物理的動機付けモデルを強化します。
ニューラルネットワークは、既存の動的エラーを補償し、基礎となるデータの記述に基づいてさらに制限される。
論文 参考訳(メタデータ) (2020-12-31T16:11:36Z) - Battery Model Calibration with Deep Reinforcement Learning [5.004835203025507]
バッテリーモデルのキャリブレーションパラメータを確実かつ効率的に推測するための強化学習ベースのフレームワークを実装します。
このフレームワークは、観測から現実ギャップを補うために、計算モデルパラメータのリアルタイム推論を可能にする。
論文 参考訳(メタデータ) (2020-12-07T19:26:08Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。