論文の概要: A Physics-informed Diffusion Model for High-fidelity Flow Field
Reconstruction
- arxiv url: http://arxiv.org/abs/2211.14680v1
- Date: Sat, 26 Nov 2022 23:14:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 19:25:07.836484
- Title: A Physics-informed Diffusion Model for High-fidelity Flow Field
Reconstruction
- Title(参考訳): 高忠実な流れ場再構成のための物理インフォームド拡散モデル
- Authors: Dule Shu, Zijie Li, Amir Barati Farimani
- Abstract要約: 本研究では,高忠実度データのみを使用する拡散モデルを提案する。
異なる構成で、本モデルでは、正規の低忠実度サンプルまたはスパース測定サンプルから高忠実度データを再構成することができる。
本モデルでは, 異なる入力源に基づく2次元乱流の正確な再構成結果が得られるが, 再学習は行わない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models are gaining increasing popularity in the domain of
fluid dynamics for their potential to accelerate the production of
high-fidelity computational fluid dynamics data. However, many recently
proposed machine learning models for high-fidelity data reconstruction require
low-fidelity data for model training. Such requirement restrains the
application performance of these models, since their data reconstruction
accuracy would drop significantly if the low-fidelity input data used in model
test has a large deviation from the training data. To overcome this restraint,
we propose a diffusion model which only uses high-fidelity data at training.
With different configurations, our model is able to reconstruct high-fidelity
data from either a regular low-fidelity sample or a sparsely measured sample,
and is also able to gain an accuracy increase by using physics-informed
conditioning information from a known partial differential equation when that
is available. Experimental results demonstrate that our model can produce
accurate reconstruction results for 2d turbulent flows based on different input
sources without retraining.
- Abstract(参考訳): 機械学習モデルは、高忠実度計算流体力学データの生産を加速する可能性から、流体力学の領域で人気が高まっている。
しかし、最近提案された高忠実度データ再構成のための機械学習モデルの多くは、モデルトレーニングに低忠実度データを必要とする。
このような要求は、モデルテストで使用される低忠実度入力データがトレーニングデータから大きくずれている場合、データ復元精度が著しく低下するため、これらのモデルのアプリケーション性能を阻害する。
この制約を克服するために,トレーニング時に高忠実度データのみを使用する拡散モデルを提案する。
構成の異なるモデルでは、正規の低忠実度サンプルまたはスパース測定サンプルから高忠実度データを再構成することができ、また、それが利用可能である場合に、既知の偏微分方程式からの物理インフォームド条件情報を用いて精度を高めることができる。
実験の結果, 異なる入力源に基づく2次元乱流を再訓練することなく, 正確な再構成結果が得られることがわかった。
関連論文リスト
- Deep learning for model correction of dynamical systems with data scarcity [0.0]
本稿では,少ない高忠実度データセットのみを用いて,既存の力学系モデルを修正するためのディープラーニングフレームワークを提案する。
我々は、高忠実度データの量が非常に小さく、既存のデータ駆動モデリング手法のほとんどを適用できない場合に焦点を当てる。
論文 参考訳(メタデータ) (2024-10-23T14:33:11Z) - Physics-integrated generative modeling using attentive planar normalizing flow based variational autoencoder [0.0]
本研究の目的は,物理統合生成モデルにおける再構成の忠実さとノイズの改善である。
モデルに注入されたノイズに対する生成モデルのロバスト性を改善するため,正規化フローベースVAEのエンコーダ部分の変更を提案する。
論文 参考訳(メタデータ) (2024-04-18T15:38:14Z) - PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction [5.06136344261226]
データ忠実度向上のためのCNNベースの手法は、トレーニング期間中の低忠実度データパターンと分布に依存している。
提案したモデルである物理インフォームド残差拡散(Residual Diffusion)は、標準の低忠実度入力からデータの品質を高める能力を示す。
実験結果から, 2次元乱流に対して, 再学習を必要とせず, 高品質な流れを効果的に再現できることが示唆された。
論文 参考訳(メタデータ) (2024-04-12T11:45:51Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Continual Learning of Diffusion Models with Generative Distillation [34.52513912701778]
拡散モデルは画像合成における最先端性能を達成する強力な生成モデルである。
本稿では,拡散モデルの全逆過程を除去する生成蒸留法を提案する。
論文 参考訳(メタデータ) (2023-11-23T14:33:03Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - A Denoising Diffusion Model for Fluid Field Prediction [0.0]
本研究では,FluidDiff という非線形流体場予測のための新しい拡散生成モデルを提案する。
拡散過程を実行することにより、モデルは高次元力学系の複雑な表現を学習することができる。
ランゲヴィンサンプリングは、指定された初期条件下での流れ状態の予測を生成するために使用される。
論文 参考訳(メタデータ) (2023-01-27T11:30:40Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。