論文の概要: Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix
Recovery
- arxiv url: http://arxiv.org/abs/2106.09211v1
- Date: Thu, 17 Jun 2021 02:28:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 15:36:54.330961
- Title: Square Root Principal Component Pursuit: Tuning-Free Noisy Robust Matrix
Recovery
- Title(参考訳): 正方根主成分追跡:チューニングなし無ノイズロバストマトリックス回復
- Authors: Junhui Zhang, Jingkai Yan, John Wright
- Abstract要約: 本稿では,ノイズや外周波で劣化した観測結果から低ランク行列を復元する新しい枠組みを提案する。
平方根のラッソにインスパイアされたこの新しい定式化は、ノイズレベルに関する事前の知識を必要としない。
正規化パラメータの1つの普遍的な選択は、(事前未知の)雑音レベルに比例した再構成誤差を達成するのに十分であることを示す。
- 参考スコア(独自算出の注目度): 8.581512812219737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new framework -- Square Root Principal Component Pursuit -- for
low-rank matrix recovery from observations corrupted with noise and outliers.
Inspired by the square root Lasso, this new formulation does not require prior
knowledge of the noise level. We show that a single, universal choice of the
regularization parameter suffices to achieve reconstruction error proportional
to the (a priori unknown) noise level. In comparison, previous formulations
such as stable PCP rely on noise-dependent parameters to achieve similar
performance, and are therefore challenging to deploy in applications where the
noise level is unknown. We validate the effectiveness of our new method through
experiments on simulated and real datasets. Our simulations corroborate the
claim that a universal choice of the regularization parameter yields near
optimal performance across a range of noise levels, indicating that the
proposed method outperforms the (somewhat loose) bound proved here.
- Abstract(参考訳): 我々は,ノイズや異常値で破損した観測から低ランク行列を回収するための新しい枠組みである正方根主成分追跡を提案する。
正方根ラッソに触発されたこの新しい定式化は、ノイズレベルに関する事前の知識を必要としない。
正規化パラメータの1つの普遍的な選択が(事前不明な)雑音レベルに比例する再構成誤差を達成するために十分であることを示す。
一方, 従来のPCPのような定式化では, 同様の性能を実現するためにノイズ依存パラメータに依存しており, ノイズレベルが不明なアプリケーションでは展開が困難である。
シミュレーションおよび実データを用いた実験により,本手法の有効性を検証する。
我々のシミュレーションは、正規化パラメータの普遍的な選択は様々なノイズレベルにおいて最適性能に近いという主張を裏付けるものであり、提案手法がここで証明された(ゆるい)バウンドよりも優れていることを示している。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Robust Learning under Hybrid Noise [24.36707245704713]
本稿では,データリカバリの観点からハイブリッドノイズに対処するため,新たな統合学習フレームワーク"Feature and Label Recovery"(FLR)を提案する。
論文 参考訳(メタデータ) (2024-07-04T16:13:25Z) - Bayesian Inference of General Noise Model Parameters from Surface Code's Syndrome Statistics [0.0]
表面符号のテンソルネットワークシミュレータを統合する一般雑音モデルベイズ推論法を提案する。
雑音パラメータが一定であり変化しない定常雑音に対しては,マルコフ連鎖モンテカルロに基づく手法を提案する。
より現実的な状況である時間変化ノイズに対しては、シーケンシャルなモンテカルロに基づく別の手法を導入する。
論文 参考訳(メタデータ) (2024-06-13T10:26:04Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
外部モデルの助けを借りずにノイズ耐性とノイズサンプルのフィルタリングを統合する反復アライメント手法を提案する。
Mistral-7BとLlama-2-7Bで広く使われている3つのデータセットの実験では、ROPOが既存の嗜好アライメント法を大幅に上回っていることが示されている。
論文 参考訳(メタデータ) (2024-04-05T13:58:51Z) - A Corrected Expected Improvement Acquisition Function Under Noisy
Observations [22.63212972670109]
期待される改善の順序 (EI) はベイズ最適化において最も広く用いられている政策の一つである。
既存の解に関する不確実性は、多くの解析的EI型法で無視されることが多い。
本稿では,ガウス過程(GP)モデルによって提供される共分散情報を組み込むことで,その閉形式表現を補正するEIの修正を提案する。
論文 参考訳(メタデータ) (2023-10-08T13:50:39Z) - Label Noise: Correcting the Forward-Correction [0.0]
ラベルノイズのあるデータセット上でニューラルネットワーク分類器を訓練することは、ノイズのあるラベルに過度に適合するリスクをもたらす。
ラベルノイズによる過度適合に対処する手法を提案する。
本研究は, オーバーフィッティングを緩和するために, トレーニング損失に低い限界を課すことを提案する。
論文 参考訳(メタデータ) (2023-07-24T19:41:19Z) - Latent Class-Conditional Noise Model [54.56899309997246]
本稿では,ベイズ的枠組みの下での雑音遷移をパラメータ化するためのLatent Class-Conditional Noise Model (LCCN)を提案する。
次に、Gibs sampler を用いて遅延真のラベルを効率的に推測できる LCCN の動的ラベル回帰法を導出する。
提案手法は,サンプルのミニバッチから事前の任意チューニングを回避するため,ノイズ遷移の安定な更新を保護している。
論文 参考訳(メタデータ) (2023-02-19T15:24:37Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
GAN(Generative Adversarial Networks)のように、最適な雑音分布はデータ分布に等しくなると広く想定されている。
我々は、この自己教師型タスクをエネルギーベースモデルの推定問題として基礎づけるノイズ・コントラスト推定に目を向ける。
本研究は, 最適雑音のサンプリングは困難であり, 効率性の向上は, データに匹敵する雑音分布を選択することに比べ, 緩やかに行うことができると結論付けた。
論文 参考訳(メタデータ) (2023-01-23T19:57:58Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
観測データセットからの因果推論は、しばしば共変量の測定と調整に依存する。
このロバストな最適化手法により、広範囲な因果調整法を拡張し、部分的同定を行うことができることを示す。
合成および実データセット全体で、このアプローチは既存の手法よりも高いカバレッジ確率でATEバウンダリを提供する。
論文 参考訳(メタデータ) (2022-02-22T04:24:26Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
勾配降下のノイズはパラメータ化モデルに対するトレーニングにおいて重要な暗黙の正則化効果をもたらす。
ミニバッチやラベルの摂動によって引き起こされるパラメータ依存ノイズはガウスノイズよりもはるかに効果的であることを示す。
分析の結果,パラメータ依存ノイズは局所最小値に偏りを生じさせるが,球状ガウス雑音は生じないことがわかった。
論文 参考訳(メタデータ) (2020-06-15T18:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。