Pruning Randomly Initialized Neural Networks with Iterative
Randomization
- URL: http://arxiv.org/abs/2106.09269v1
- Date: Thu, 17 Jun 2021 06:32:57 GMT
- Title: Pruning Randomly Initialized Neural Networks with Iterative
Randomization
- Authors: Daiki Chijiwa, Shin'ya Yamaguchi, Yasutoshi Ida, Kenji Umakoshi,
Tomohiro Inoue
- Abstract summary: We introduce a novel framework to prune randomly neural networks with iteratively randomizing weight values (IteRand)
Theoretically, we prove an approximation theorem in our framework, which indicates that the randomizing operations are provably effective to reduce the required number of the parameters.
- Score: 7.676965708017808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pruning the weights of randomly initialized neural networks plays an
important role in the context of lottery ticket hypothesis. Ramanujan et al.
(2020) empirically showed that only pruning the weights can achieve remarkable
performance instead of optimizing the weight values. However, to achieve the
same level of performance as the weight optimization, the pruning approach
requires more parameters in the networks before pruning and thus more memory
space. To overcome this parameter inefficiency, we introduce a novel framework
to prune randomly initialized neural networks with iteratively randomizing
weight values (IteRand). Theoretically, we prove an approximation theorem in
our framework, which indicates that the randomizing operations are provably
effective to reduce the required number of the parameters. We also empirically
demonstrate the parameter efficiency in multiple experiments on CIFAR-10 and
ImageNet.
Related papers
- Parallel-in-Time Solutions with Random Projection Neural Networks [0.07282584715927627]
This paper considers one of the fundamental parallel-in-time methods for the solution of ordinary differential equations, Parareal, and extends it by adopting a neural network as a coarse propagator.
We provide a theoretical analysis of the convergence properties of the proposed algorithm and show its effectiveness for several examples, including Lorenz and Burgers' equations.
arXiv Detail & Related papers (2024-08-19T07:32:41Z) - Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
We propose a coarse & fine weight splitting (CFWS) method to reduce quantization error of weight.
We develop an improved KL metric to determine optimal quantization scales for activation.
For example, the quantized RepVGG-A1 model exhibits a mere 0.3% accuracy loss.
arXiv Detail & Related papers (2023-12-17T02:31:20Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - On the optimization and pruning for Bayesian deep learning [1.0152838128195467]
We propose a new adaptive variational Bayesian algorithm to train neural networks on weight space.
The EM-MCMC algorithm allows us to perform optimization and model pruning within one-shot.
Our dense model can reach the state-of-the-art performance and our sparse model perform very well compared to previously proposed pruning schemes.
arXiv Detail & Related papers (2022-10-24T05:18:08Z) - Robust Learning of Parsimonious Deep Neural Networks [0.0]
We propose a simultaneous learning and pruning algorithm capable of identifying and eliminating irrelevant structures in a neural network.
We derive a novel hyper-prior distribution over the prior parameters that is crucial for their optimal selection.
We evaluate the proposed algorithm on the MNIST data set and commonly used fully connected and convolutional LeNet architectures.
arXiv Detail & Related papers (2022-05-10T03:38:55Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Progressive Skeletonization: Trimming more fat from a network at
initialization [76.11947969140608]
We propose an objective to find a skeletonized network with maximum connection sensitivity.
We then propose two approximate procedures to maximize our objective.
Our approach provides remarkably improved performance on higher pruning levels.
arXiv Detail & Related papers (2020-06-16T11:32:47Z) - Bandit Samplers for Training Graph Neural Networks [63.17765191700203]
Several sampling algorithms with variance reduction have been proposed for accelerating the training of Graph Convolution Networks (GCNs)
These sampling algorithms are not applicable to more general graph neural networks (GNNs) where the message aggregator contains learned weights rather than fixed weights, such as Graph Attention Networks (GAT)
arXiv Detail & Related papers (2020-06-10T12:48:37Z) - Highly Efficient Salient Object Detection with 100K Parameters [137.74898755102387]
We propose a flexible convolutional module, namely generalized OctConv (gOctConv), to efficiently utilize both in-stage and cross-stages multi-scale features.
We build an extremely light-weighted model, namely CSNet, which achieves comparable performance with about 0.2% (100k) of large models on popular object detection benchmarks.
arXiv Detail & Related papers (2020-03-12T07:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.