Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction
- URL: http://arxiv.org/abs/2106.09305v1
- Date: Thu, 17 Jun 2021 08:15:04 GMT
- Title: Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction
- Authors: Minhao Liu, Ailing Zeng, Qiuxia Lai, Qiang Xu
- Abstract summary: Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically.
Existing deep learning techniques use generic sequence models for time series analysis, which ignore some of its unique properties.
We propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling.
- Score: 9.449017120452675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series is a special type of sequence data, a set of observations
collected at even intervals of time and ordered chronologically. Existing deep
learning techniques use generic sequence models (e.g., recurrent neural
network, Transformer model, or temporal convolutional network) for time series
analysis, which ignore some of its unique properties. For example, the
downsampling of time series data often preserves most of the information in the
data, while this is not true for general sequence data such as text sequence
and DNA sequence. Motivated by the above, in this paper, we propose a novel
neural network architecture and apply it for the time series forecasting
problem, wherein we conduct sample convolution and interaction at multiple
resolutions for temporal modeling. The proposed architecture, namelySCINet,
facilitates extracting features with enhanced predictability. Experimental
results show that SCINet achieves significant prediction accuracy improvement
over existing solutions across various real-world time series forecasting
datasets. In particular, it can achieve high fore-casting accuracy for those
temporal-spatial datasets without using sophisticated spatial modeling
techniques. Our codes and data are presented in the supplemental material.
Related papers
- Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - Multivariate Time Series Regression with Graph Neural Networks [0.6124773188525718]
Recent advances in adapting Deep Learning to graphs have shown promising potential in various graph-related tasks.
However, these methods have not been adapted for time series related tasks to a great extent.
In this work, we propose an architecture capable of processing these long sequences in a multivariate time series regression task.
arXiv Detail & Related papers (2022-01-03T16:11:46Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
Time series data are ubiquitous in several domains as climate, economics and health care.
Recent conceptual approach relies on time series mapping to complex networks.
Network analysis can be used to characterize different types of time series.
arXiv Detail & Related papers (2021-10-11T13:46:28Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Improved Predictive Deep Temporal Neural Networks with Trend Filtering [22.352437268596674]
We propose a new prediction framework based on deep neural networks and a trend filtering.
We reveal that the predictive performance of deep temporal neural networks improves when the training data is temporally processed by a trend filtering.
arXiv Detail & Related papers (2020-10-16T08:29:36Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
We present a deep learning structural time series model which can handle correlated multivariate time series input.
The model explicitly learns/extracts the trend, seasonality, and event components.
We compare our model with several state-of-the-art methods through a comprehensive set of experiments on a variety of time series data sets.
arXiv Detail & Related papers (2020-01-02T18:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.