Quantum Software Development Lifecycle
- URL: http://arxiv.org/abs/2106.09323v1
- Date: Thu, 17 Jun 2021 08:41:26 GMT
- Title: Quantum Software Development Lifecycle
- Authors: Benjamin Weder, Johanna Barzen, Frank Leymann, Daniel Vietz
- Abstract summary: In this chapter, we analyze the software artifacts usually comprising a quantum application and present their corresponding lifecycles.
We identify the points of connection between the various lifecycles and integrate them into the overall quantum software development lifecycle.
- Score: 0.4588028371034407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent advances in the development of more powerful quantum computers,
the research area of quantum software engineering is emerging, having the goal
to provide concepts, principles, and guidelines to develop high-quality quantum
applications. In classical software engineering, lifecycles are used to
document the process of designing, implementing, maintaining, analyzing, and
adapting software. Such lifecycles provide a common understanding of how to
develop and operate an application, which is especially important due to the
interdisciplinary nature of quantum computing. Since today`s quantum
applications are, in most cases, hybrid, consisting of quantum and classical
programs, the lifecycle for quantum applications must involve the development
of both kinds of programs. However, the existing lifecycles only target the
development of quantum or classical programs in isolation. Additionally, the
various programs must be orchestrated, e.g., using workflows. Thus, the
development of quantum applications also incorporates the workflow lifecycle.
In this chapter, we analyze the software artifacts usually comprising a quantum
application and present their corresponding lifecycles. Furthermore, we
identify the points of connection between the various lifecycles and integrate
them into the overall quantum software development lifecycle. Therefore, the
integrated lifecycle serves as a basis for the development and execution of
hybrid quantum applications.
Related papers
- Advancing Quantum Software Engineering: A Vision of Hybrid Full-Stack Iterative Model [5.9478154558776435]
This paper introduces a vision for Quantum Software Develop- ment lifecycle.
It proposes a hybrid full-stack iterative model that integrates quantum and classical computing.
arXiv Detail & Related papers (2024-03-18T11:18:33Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Software Engineering Challenges from Developers' Perspective:
Mapping Research Challenges to the Proposed Workflow Model [5.287156503763459]
Software engineering of quantum programs can be approached from two directions.
In this paper, we aim at bridging the gap by starting with the quantum computing workflow and by mapping existing software engineering research to this workflow.
arXiv Detail & Related papers (2023-08-02T13:32:31Z) - Quantum Software Analytics: Opportunities and Challenges [25.276328005616204]
Quantum computing systems depend on the principles of quantum mechanics to perform challenging tasks more efficiently than their classical counterparts.
In classical software engineering, the software life cycle is used to document and structure the processes of design, implementation, and maintenance of software applications.
We summarize a set of software analytics topics and techniques in the development life cycle that can be leveraged and integrated into quantum software application development.
arXiv Detail & Related papers (2023-07-21T02:24:31Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Symbolic quantum programming for supporting applications of quantum
computing technologies [0.0]
The main focus of this paper is on quantum computing technologies, as they can in the most direct way benefit from developing tools.
We deliver a short survey of the most popular approaches in the field of quantum software development and we aim at pointing their strengths and weaknesses.
Next, we describe a software architecture and its preliminary implementation supporting the development of quantum programs using symbolic approach.
arXiv Detail & Related papers (2023-02-18T18:30:00Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - QFaaS: A Serverless Function-as-a-Service Framework for Quantum
Computing [22.068803245816266]
We propose a Quantum Function-as-a-Service framework to advance quantum computing.
Our framework provides essential components of a quantum serverless platform to simplify the software development and adapt to the quantum cloud computing paradigm.
This paper proposes architectural design, principal components, the life cycle of hybrid quantum-classical function, operation workflow, and implementation of QF.
arXiv Detail & Related papers (2022-05-30T04:18:53Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.