Assessing requirements to scale to practical quantum advantage
- URL: http://arxiv.org/abs/2211.07629v1
- Date: Mon, 14 Nov 2022 18:50:27 GMT
- Title: Assessing requirements to scale to practical quantum advantage
- Authors: Michael E. Beverland, Prakash Murali, Matthias Troyer, Krysta M.
Svore, Torsten Hoefler, Vadym Kliuchnikov, Guang Hao Low, Mathias Soeken,
Aarthi Sundaram, and Alexander Vaschillo
- Abstract summary: We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
- Score: 56.22441723982983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While quantum computers promise to solve some scientifically and commercially
valuable problems thought intractable for classical machines, delivering on
this promise will require a large-scale quantum machine. Understanding the
impact of architecture design choices for a scaled quantum stack for specific
applications, prior to full realization of the quantum system, is an important
open challenge. To this end, we develop a framework for quantum resource
estimation, abstracting the layers of the stack, to estimate resources required
across these layers for large-scale quantum applications. Using a tool that
implements this framework, we assess three scaled quantum applications and find
that hundreds of thousands to millions of physical qubits are needed to achieve
practical quantum advantage. We identify three qubit parameters, namely size,
speed, and controllability, that are critical at scale to rendering these
applications practical. A goal of our work is to accelerate progress towards
practical quantum advantage by enabling the broader community to explore design
choices across the stack, from algorithms to qubits.
Related papers
- How to Build a Quantum Supercomputer: Scaling Challenges and Opportunities [3.864855748348313]
Small-scale demonstrations have become possible for quantum algorithmic primitives on hundreds of physical qubits.
Despite significant progress and excitement, the path toward a full-stack scalable technology is largely unknown.
We show how the road to scaling could be paved by adopting existing semiconductor technology to build much higher-quality qubits.
arXiv Detail & Related papers (2024-11-15T18:22:46Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
discrete-time quantum walk (DTQW) model one of most suitable choices for circuit implementation.
In this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half.
For the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency.
arXiv Detail & Related papers (2024-08-01T13:07:13Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum utility -- definition and assessment of a practical quantum
advantage [0.0]
Different use-cases come with different requirements for size, weight, power consumption, or data privacy.
This paper aims to incorporate these characteristics into a concept coined quantum utility.
It demonstrates the effectiveness and practicality of quantum computers for various applications.
arXiv Detail & Related papers (2023-03-03T18:33:46Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.