Symbolic quantum programming for supporting applications of quantum
computing technologies
- URL: http://arxiv.org/abs/2302.09401v1
- Date: Sat, 18 Feb 2023 18:30:00 GMT
- Title: Symbolic quantum programming for supporting applications of quantum
computing technologies
- Authors: Jaros{\l}aw Adam Miszczak
- Abstract summary: The main focus of this paper is on quantum computing technologies, as they can in the most direct way benefit from developing tools.
We deliver a short survey of the most popular approaches in the field of quantum software development and we aim at pointing their strengths and weaknesses.
Next, we describe a software architecture and its preliminary implementation supporting the development of quantum programs using symbolic approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The goal of this paper is to deliver the overview of the current state of the
art, to provide experience report on developing quantum software tools, and to
outline the perspective for developing quantum programming tools supporting
symbolic programming for the needs of quantum computing technologies. The main
focus of this paper is on quantum computing technologies, as they can in the
most direct way benefit from developing tools enabling the symbolic
manipulation of quantum circuits and providing software tools for creating,
optimizing, and testing quantum programs. We deliver a short survey of the most
popular approaches in the field of quantum software development and we aim at
pointing their strengths and weaknesses. This helps to formulate a list of
desirable characteristics which should be included in quantum computing
frameworks. Next, we describe a software architecture and its preliminary
implementation supporting the development of quantum programs using symbolic
approach, encouraging the functional programming paradigm, and, at the same,
time enabling the integration with high-performance and cloud computing. The
described software consists of several packages developed to address different
needs, but nevertheless sharing common design concepts. We also outline how the
presented approach could be used in tasks in quantum software engineering,
namely quantum software testing and quantum circuit construction.
Related papers
- Advancing Quantum Software Engineering: A Vision of Hybrid Full-Stack Iterative Model [5.9478154558776435]
This paper introduces a vision for Quantum Software Develop- ment lifecycle.
It proposes a hybrid full-stack iterative model that integrates quantum and classical computing.
arXiv Detail & Related papers (2024-03-18T11:18:33Z) - Quantum Software Engineering Challenges from Developers' Perspective:
Mapping Research Challenges to the Proposed Workflow Model [5.287156503763459]
Software engineering of quantum programs can be approached from two directions.
In this paper, we aim at bridging the gap by starting with the quantum computing workflow and by mapping existing software engineering research to this workflow.
arXiv Detail & Related papers (2023-08-02T13:32:31Z) - Quantum Software Analytics: Opportunities and Challenges [25.276328005616204]
Quantum computing systems depend on the principles of quantum mechanics to perform challenging tasks more efficiently than their classical counterparts.
In classical software engineering, the software life cycle is used to document and structure the processes of design, implementation, and maintenance of software applications.
We summarize a set of software analytics topics and techniques in the development life cycle that can be leveraged and integrated into quantum software application development.
arXiv Detail & Related papers (2023-07-21T02:24:31Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - QFaaS: A Serverless Function-as-a-Service Framework for Quantum
Computing [22.068803245816266]
We propose a Quantum Function-as-a-Service framework to advance quantum computing.
Our framework provides essential components of a quantum serverless platform to simplify the software development and adapt to the quantum cloud computing paradigm.
This paper proposes architectural design, principal components, the life cycle of hybrid quantum-classical function, operation workflow, and implementation of QF.
arXiv Detail & Related papers (2022-05-30T04:18:53Z) - Formal Verification of Quantum Programs: Theory, Tools and Challenges [0.0]
Survey aims to be a short introduction into the area of formal verification of quantum programs.
This survey examines some of the challenges that the field may face in the future, namely the development of complex quantum algorithms.
arXiv Detail & Related papers (2021-10-04T11:00:48Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.