Dynamic Knowledge Distillation with A Single Stream Structure for
RGB-DSalient Object Detection
- URL: http://arxiv.org/abs/2106.09517v1
- Date: Thu, 17 Jun 2021 14:07:25 GMT
- Title: Dynamic Knowledge Distillation with A Single Stream Structure for
RGB-DSalient Object Detection
- Authors: Guangyu Ren, Tania Stathaki
- Abstract summary: RGB-D salient object detection(SOD) demonstrates its superiority on detecting in complex environments.
An independent stream is introduced to extract features from depth images, leading to extra computation and parameters.
We propose a dynamic distillation method along with a lightweight framework, which significantly reduces the parameters.
- Score: 8.57914821832517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RGB-D salient object detection(SOD) demonstrates its superiority on detecting
in complex environments due to the additional depth information introduced in
the data. Inevitably, an independent stream is introduced to extract features
from depth images, leading to extra computation and parameters. This
methodology which sacrifices the model size to improve the detection accuracy
may impede the practical application of SOD problems. To tackle this dilemma,
we propose a dynamic distillation method along with a lightweight framework,
which significantly reduces the parameters. This method considers the factors
of both teacher and student performance within the training stage and
dynamically assigns the distillation weight instead of applying a fixed weight
on the student model. Extensive experiments are conducted on five public
datasets to demonstrate that our method can achieve competitive performance
compared to 10 prior methods through a 78.2MB lightweight structure.
Related papers
- Domain-invariant Progressive Knowledge Distillation for UAV-based Object Detection [13.255646312416532]
We propose a novel knowledge distillation framework for UAV-OD.
Specifically, a progressive distillation approach is designed to alleviate the feature gap between teacher and student models.
A new feature alignment method is provided to extract object-related features for enhancing student model's knowledge reception efficiency.
arXiv Detail & Related papers (2024-08-21T08:05:03Z) - Depth-discriminative Metric Learning for Monocular 3D Object Detection [14.554132525651868]
We introduce a novel metric learning scheme that encourages the model to extract depth-discriminative features regardless of the visual attributes.
Our method consistently improves the performance of various baselines by 23.51% and 5.78% on average.
arXiv Detail & Related papers (2024-01-02T07:34:09Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Object-centric Cross-modal Feature Distillation for Event-based Object
Detection [87.50272918262361]
RGB detectors still outperform event-based detectors due to sparsity of the event data and missing visual details.
We develop a novel knowledge distillation approach to shrink the performance gap between these two modalities.
We show that object-centric distillation allows to significantly improve the performance of the event-based student object detector.
arXiv Detail & Related papers (2023-11-09T16:33:08Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Dense Depth Distillation with Out-of-Distribution Simulated Images [30.79756881887895]
We study data-free knowledge distillation (KD) for monocular depth estimation (MDE)
KD learns a lightweight model for real-world depth perception tasks by compressing it from a trained teacher model while lacking training data in the target domain.
We show that our method outperforms the baseline KD by a good margin and even slightly better performance with as few as 1/6 of training images.
arXiv Detail & Related papers (2022-08-26T07:10:01Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
We present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet.
The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.
arXiv Detail & Related papers (2022-06-20T14:24:16Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.