Accuracy, Interpretability, and Differential Privacy via Explainable
Boosting
- URL: http://arxiv.org/abs/2106.09680v1
- Date: Thu, 17 Jun 2021 17:33:00 GMT
- Title: Accuracy, Interpretability, and Differential Privacy via Explainable
Boosting
- Authors: Harsha Nori, Rich Caruana, Zhiqi Bu, Judy Hanwen Shen, Janardhan
Kulkarni
- Abstract summary: We show that adding differential privacy to Explainable Boosting Machines (EBMs) yields state-of-the-art accuracy while protecting privacy.
Our experiments on multiple classification and regression datasets show that DP-EBM models suffer surprisingly little accuracy loss even with strong differential privacy guarantees.
- Score: 22.30100748652558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that adding differential privacy to Explainable Boosting Machines
(EBMs), a recent method for training interpretable ML models, yields
state-of-the-art accuracy while protecting privacy. Our experiments on multiple
classification and regression datasets show that DP-EBM models suffer
surprisingly little accuracy loss even with strong differential privacy
guarantees. In addition to high accuracy, two other benefits of applying DP to
EBMs are: a) trained models provide exact global and local interpretability,
which is often important in settings where differential privacy is needed; and
b) the models can be edited after training without loss of privacy to correct
errors which DP noise may have introduced.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Rethinking Improved Privacy-Utility Trade-off with Pre-existing Knowledge for DP Training [31.559864332056648]
We propose a generic differential privacy framework with heterogeneous noise (DP-Hero)
Atop DP-Hero, we instantiate a heterogeneous version of DP-SGD, where the noise injected into gradient updates is heterogeneous and guided by prior-established model parameters.
We conduct comprehensive experiments to verify and explain the effectiveness of the proposed DP-Hero, showing improved training accuracy compared with state-of-the-art works.
arXiv Detail & Related papers (2024-09-05T08:40:54Z) - Weights Shuffling for Improving DPSGD in Transformer-based Models [7.356743536182233]
This work introduces an innovative shuffling mechanism in Differentially-Private Gradient Descent (DPSGD) to enhance the utility of large models at the same privacy guarantee of the unshuffled case.
We show that permutation indeed improves the privacy guarantee of DPSGD in theory, but tracking the exact privacy loss on shuffled model is particularly challenging.
arXiv Detail & Related papers (2024-07-22T06:41:59Z) - Sparsity-Preserving Differentially Private Training of Large Embedding
Models [67.29926605156788]
DP-SGD is a training algorithm that combines differential privacy with gradient descent.
Applying DP-SGD naively to embedding models can destroy gradient sparsity, leading to reduced training efficiency.
We present two new algorithms, DP-FEST and DP-AdaFEST, that preserve gradient sparsity during private training of large embedding models.
arXiv Detail & Related papers (2023-11-14T17:59:51Z) - Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in
Private SGD [56.01810892677744]
We show a connection between per-sample gradient norms and the estimation bias of the private gradient oracle used in DP-SGD.
We propose Bias-Aware Minimisation (BAM) that allows for the provable reduction of private gradient estimator bias.
arXiv Detail & Related papers (2023-08-23T09:20:41Z) - Discriminative Adversarial Privacy: Balancing Accuracy and Membership
Privacy in Neural Networks [7.0895962209555465]
Discriminative Adversarial Privacy (DAP) is a learning technique designed to achieve a balance between model performance, speed, and privacy.
DAP relies on adversarial training based on a novel loss function able to minimise the prediction error while maximising the MIA's error.
In addition, we introduce a novel metric named Accuracy Over Privacy (AOP) to capture the performance-privacy trade-off.
arXiv Detail & Related papers (2023-06-05T17:25:45Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - DPlis: Boosting Utility of Differentially Private Deep Learning via
Randomized Smoothing [0.0]
We propose DPlis--Differentially Private Learning wIth Smoothing.
We show that DPlis can effectively boost model quality and training stability under a given privacy budget.
arXiv Detail & Related papers (2021-03-02T06:33:14Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
A differentially private model degrades the utility drastically when the model comprises a large number of trainable parameters.
We propose an algorithm emphGradient Embedding Perturbation (GEP) towards training differentially private deep models with decent accuracy.
arXiv Detail & Related papers (2021-02-25T04:29:58Z) - Improving Deep Learning with Differential Privacy using Gradient
Encoding and Denoising [36.935465903971014]
In this paper, we aim at training deep learning models with differential privacy guarantees.
Our key technique is to encode gradients to map them to a smaller vector space.
We show that our mechanism outperforms the state-of-the-art DPSGD.
arXiv Detail & Related papers (2020-07-22T16:33:14Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.