Weights Shuffling for Improving DPSGD in Transformer-based Models
- URL: http://arxiv.org/abs/2407.15414v1
- Date: Mon, 22 Jul 2024 06:41:59 GMT
- Title: Weights Shuffling for Improving DPSGD in Transformer-based Models
- Authors: Jungang Yang, Zhe Ji, Liyao Xiang,
- Abstract summary: This work introduces an innovative shuffling mechanism in Differentially-Private Gradient Descent (DPSGD) to enhance the utility of large models at the same privacy guarantee of the unshuffled case.
We show that permutation indeed improves the privacy guarantee of DPSGD in theory, but tracking the exact privacy loss on shuffled model is particularly challenging.
- Score: 7.356743536182233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential Privacy (DP) mechanisms, especially in high-dimensional settings, often face the challenge of maintaining privacy without compromising the data utility. This work introduces an innovative shuffling mechanism in Differentially-Private Stochastic Gradient Descent (DPSGD) to enhance the utility of large models at the same privacy guarantee of the unshuffled case. Specifically, we reveal that random shuffling brings additional randomness to the trajectory of gradient descent while not impacting the model accuracy by the permutation invariance property -- the model can be equivalently computed in both forward and backward propagations under permutation. We show that permutation indeed improves the privacy guarantee of DPSGD in theory, but tracking the exact privacy loss on shuffled model is particularly challenging. Hence we exploit the approximation on sum of lognormal distributions to derive the condition for the shuffled DPSGD to meet the DP guarantee. Auditing results show that our condition offers a DP guarantee quite close to the audited privacy level, demonstrating our approach an effective estimation in practice. Experimental results have verified our theoretical derivation and illustrate that our mechanism improves the accuracy of DPSGD over the state-of-the-art baselines on a variety of models and tasks.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Rethinking Improved Privacy-Utility Trade-off with Pre-existing Knowledge for DP Training [31.559864332056648]
We propose a generic differential privacy framework with heterogeneous noise (DP-Hero)
Atop DP-Hero, we instantiate a heterogeneous version of DP-SGD, where the noise injected into gradient updates is heterogeneous and guided by prior-established model parameters.
We conduct comprehensive experiments to verify and explain the effectiveness of the proposed DP-Hero, showing improved training accuracy compared with state-of-the-art works.
arXiv Detail & Related papers (2024-09-05T08:40:54Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Using Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) to ensure Differential Privacy (DP) comes at the cost of model performance degradation.
We propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC.
We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R'enyi DP.
arXiv Detail & Related papers (2023-11-24T17:56:44Z) - Improving Differentially Private SGD via Randomly Sparsified Gradients [31.295035726077366]
Differentially private gradient observation (DP-SGD) has been widely adopted in deep learning to provide rigorously defined privacy bound compression.
We propose an and utilize RS to strengthen communication cost and strengthen privacy bound compression.
arXiv Detail & Related papers (2021-12-01T21:43:34Z) - Dynamic Differential-Privacy Preserving SGD [19.273542515320372]
Differentially-Private Gradient Descent (DP-SGD) prevents training-data privacy breaches by adding noise to the clipped gradient during SGD training.
The same clipping operation and additive noise across training steps results in unstable updates and even a ramp-up period.
We propose the dynamic DP-SGD, which has a lower privacy cost than the DP-SGD during updates until they achieve the same target privacy budget.
arXiv Detail & Related papers (2021-10-30T04:45:11Z) - Smoothed Differential Privacy [55.415581832037084]
Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-case analysis.
In this paper, we propose a natural extension of DP following the worst average-case idea behind the celebrated smoothed analysis.
We prove that any discrete mechanism with sampling procedures is more private than what DP predicts, while many continuous mechanisms with sampling procedures are still non-private under smoothed DP.
arXiv Detail & Related papers (2021-07-04T06:55:45Z) - Accuracy, Interpretability, and Differential Privacy via Explainable
Boosting [22.30100748652558]
We show that adding differential privacy to Explainable Boosting Machines (EBMs) yields state-of-the-art accuracy while protecting privacy.
Our experiments on multiple classification and regression datasets show that DP-EBM models suffer surprisingly little accuracy loss even with strong differential privacy guarantees.
arXiv Detail & Related papers (2021-06-17T17:33:00Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection.
However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals' sensitive and private information.
We propose a R'enyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training.
arXiv Detail & Related papers (2020-07-04T09:51:02Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.