論文の概要: Synthetic COVID-19 Chest X-ray Dataset for Computer-Aided Diagnosis
- arxiv url: http://arxiv.org/abs/2106.09759v1
- Date: Thu, 17 Jun 2021 18:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 14:13:03.087364
- Title: Synthetic COVID-19 Chest X-ray Dataset for Computer-Aided Diagnosis
- Title(参考訳): コンピュータ診断のための合成covid-19胸部x線データセット
- Authors: Hasib Zunair and A. Ben Hamza
- Abstract要約: データセットは21,295個の合成新型コロナウイルスの胸部X線画像からなり、コンピュータによる診断に使用される。
これらの画像は、教師なしのドメイン適応アプローチによって生成され、高品質である。
- 参考スコア(独自算出の注目度): 1.1501261942096426
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a new dataset called Synthetic COVID-19 Chest X-ray Dataset for
training machine learning models. The dataset consists of 21,295 synthetic
COVID-19 chest X-ray images to be used for computer-aided diagnosis. These
images, generated via an unsupervised domain adaptation approach, are of high
quality. We find that the synthetic images not only improve performance of
various deep learning architectures when used as additional training data under
heavy imbalance conditions, but also detect the target class with high
confidence. We also find that comparable performance can also be achieved when
trained only on synthetic images. Further, salient features of the synthetic
COVID-19 images indicate that the distribution is significantly different from
Non-COVID-19 classes, enabling a proper decision boundary. We hope the
availability of such high fidelity chest X-ray images of COVID-19 will
encourage advances in the development of diagnostic and/or management tools.
- Abstract(参考訳): 我々は、機械学習モデルをトレーニングするためのSynthetic COVID-19 Chest X-ray Datasetと呼ばれる新しいデータセットを紹介した。
データセットは21,295個の合成covid-19胸部x線画像からなり、コンピュータ支援診断に用いられる。
これらの画像は教師なしのドメイン適応アプローチで生成され、高品質である。
重度不均衡条件下での追加トレーニングデータとして使用すると、合成画像は様々なディープラーニングアーキテクチャのパフォーマンスを向上させるだけでなく、高い信頼性でターゲットクラスを検出する。
また、合成画像のみをトレーニングすることで、同等のパフォーマンスを達成できることも分かりました。
さらに、合成COVID-19画像の健全な特徴は、分布が非COVID-19クラスと大きく異なることを示し、適切な決定境界を可能にする。
このような高忠実度胸部x線画像が利用可能になれば、診断および/または管理ツールの開発が促進されることを願っています。
関連論文リスト
- COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark
Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics [79.90346960083775]
我々は,胸部X線画像を用いたコンピュータ支援型COVID-19診断のための,多施設のオープンソースベンチマークデータセットであるCOVIDx CXR-4を紹介する。
COVIDx CXR-4は、患者の総コホートサイズを2.66倍に増やすことで、前回のCOVIDx CXR-3データセットで大幅に拡大する。
患者人口、画像メタデータ、および疾患分布の多様性について広範な分析を行い、潜在的なデータセットバイアスを明らかにする。
論文 参考訳(メタデータ) (2023-11-29T14:40:31Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Detection of COVID19 in Chest X-Ray Images Using Transfer Learning [0.0]
本稿では,VGG-16とVGG-19という,最もよく知られた2つのVGGNetアーキテクチャを用いたトランスファーラーニングの概念について検討する。
我々は,複数クラスとバイナリの分類問題において,正のCovid-19インスタンスを識別するために,提案システムの性能を評価するために2つの異なるデータセットを生成した。
論文 参考訳(メタデータ) (2023-04-09T05:02:04Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
新型コロナウイルス(COVID-19)のパンデミック(パンデミック)の間、新型コロナウイルス(COVID-19)の診断のための緊急設定で実施される画像の量は、臨床用CXRの取得が広範囲に及んだ。
公開データセット内の臨床的に取得されたCXRの変動品質は、アルゴリズムのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、新型コロナウイルスの胸部X線データセットを前処理し、望ましくないバイアスを取り除くための、シンプルで効果的なステップワイズアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:57:04Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
RT-PCR検査の補助的スクリーニング戦略としての胸部X線撮影(CXR)の利用が増加している。
CXRイメージングに基づく新型コロナウイルススクリーニングのための多くの視覚知覚モデルが提案されている。
我々は、COVID-19コンピュータビジョン研究を支援するために、CXR画像の大規模なベンチマークデータセットであるCOVIDx CXR-3を紹介する。
論文 参考訳(メタデータ) (2022-06-08T04:39:44Z) - Improving COVID-19 CXR Detection with Synthetic Data Augmentation [0.0]
我々は,新型コロナウイルス画像データに基づく深層学習モデルを訓練し,そのモデルを病院の胸部X線データ上で評価する。
我々は、このデータに基づいて合成X線画像を生成するために、ジェネレーティブ・アドバイサル・ネットワークを使用している。
論文 参考訳(メタデータ) (2021-12-14T16:42:39Z) - Classification of COVID-19 on chest X-Ray images using Deep Learning
model with Histogram Equalization and Lungs Segmentation [1.6019444314820142]
本研究は,胸部X線を用いたコビッドウイルス感染肺の検出のためのディープラーニングアーキテクチャに基づく研究である。
我々の新しいアプローチは、よく知られた前処理技術、特徴抽出法、およびデータセットバランス法を組み合わせることで、優れた98%の認識率をもたらす。
論文 参考訳(メタデータ) (2021-12-05T05:04:38Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - Synthesis of COVID-19 Chest X-rays using Unpaired Image-to-Image
Translation [6.22964000148682]
我々は、教師なしドメイン適応アプローチを用いて、新型コロナウイルスの胸部X線画像の最初のオープンデータセットを構築した。
各種ディープラーニングアーキテクチャを用いたCOVID-19検出では,大幅な性能向上が見られた。
公開されているベンチマークデータセットは、21,295の合成新型コロナウイルスの胸部X線画像で構成されています。
論文 参考訳(メタデータ) (2020-10-20T13:37:40Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
胸部CT画像に基づくCOVID-19分類のための適応的特徴選択ガイド付き深層林(AFS-DF)を提案する。
AFS-DF on COVID-19 data with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)。
論文 参考訳(メタデータ) (2020-05-07T06:00:02Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
新型コロナウイルスは肺炎に似た呼吸器症候群である。
科学者、研究者、医療専門家は、肺感染症の特定によって、新型コロナウイルスの迅速かつ自動化された診断に貢献している。
本稿では,様々な最先端ディープラーニング手法における非バイアスの微調整学習(トランスファーラーニング)に対するランダムなオーバーサンプリングと重み付きクラス損失関数アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-23T10:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。