論文の概要: Improving COVID-19 CXR Detection with Synthetic Data Augmentation
- arxiv url: http://arxiv.org/abs/2112.07529v1
- Date: Tue, 14 Dec 2021 16:42:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-15 18:56:14.595003
- Title: Improving COVID-19 CXR Detection with Synthetic Data Augmentation
- Title(参考訳): 合成データ拡張によるCOVID-19 CXR検出の改善
- Authors: Daniel Schaudt, Christopher Kloth, Christian Spaete, Andreas
Hinteregger, Meinrad Beer, Reinhold von Schwerin
- Abstract要約: 我々は,新型コロナウイルス画像データに基づく深層学習モデルを訓練し,そのモデルを病院の胸部X線データ上で評価する。
我々は、このデータに基づいて合成X線画像を生成するために、ジェネレーティブ・アドバイサル・ネットワークを使用している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since the beginning of the COVID-19 pandemic, researchers have developed deep
learning models to classify COVID-19 induced pneumonia. As with many medical
imaging tasks, the quality and quantity of the available data is often limited.
In this work we train a deep learning model on publicly available COVID-19
image data and evaluate the model on local hospital chest X-ray data. The data
has been reviewed and labeled by two radiologists to ensure a high quality
estimation of the generalization capabilities of the model. Furthermore, we are
using a Generative Adversarial Network to generate synthetic X-ray images based
on this data. Our results show that using those synthetic images for data
augmentation can improve the model's performance significantly. This can be a
promising approach for many sparse data domains.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックの開始以来、研究者らは新型コロナウイルスによる肺炎を分類するディープラーニングモデルを開発した。
多くの医療画像処理と同様に、利用可能なデータの質と量はしばしば制限される。
本研究は,新型コロナウイルス画像データを用いた深層学習モデルを訓練し,局所病院胸部X線データによる評価を行う。
このデータを2人の放射線学者によってレビュー・ラベルし、モデルの一般化能力を高精度に評価した。
さらに, 生成的逆ネットワークを用いて, このデータに基づいて合成x線画像を生成する。
以上の結果から,データ拡張に合成画像を用いることで,モデルの性能が著しく向上することが示唆された。
これは多くのスパースデータドメインにとって有望なアプローチである。
関連論文リスト
- COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark
Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics [79.90346960083775]
我々は,胸部X線画像を用いたコンピュータ支援型COVID-19診断のための,多施設のオープンソースベンチマークデータセットであるCOVIDx CXR-4を紹介する。
COVIDx CXR-4は、患者の総コホートサイズを2.66倍に増やすことで、前回のCOVIDx CXR-3データセットで大幅に拡大する。
患者人口、画像メタデータ、および疾患分布の多様性について広範な分析を行い、潜在的なデータセットバイアスを明らかにする。
論文 参考訳(メタデータ) (2023-11-29T14:40:31Z) - Evaluating the feasibility of using Generative Models to generate Chest
X-Ray Data [0.0]
人工胸部X線画像作成のための生成モデルの有用性について検討した。
我々は,ケストX線14データセットを実験に利用し,モデルの性能評価を行った。
その結果,生成した画像は視覚的に説得力があり,分類モデルの精度向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2023-05-30T10:36:30Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Explainable and Lightweight Model for COVID-19 Detection Using Chest
Radiology Images [0.0]
畳み込みニューラルネットワーク(CNN)は、大量のデータをトレーニングする際の画像解析タスクに適している。
新型コロナウイルス(COVID-19)の検出のために提案されたツールのほとんどは、高い感度とリコールを持っているが、目に見えないデータセットでのテストでは、一般化と実行に失敗している。
本研究は,提案モデルの成功と失敗について,画像レベルで詳細に考察する。
論文 参考訳(メタデータ) (2022-12-28T11:48:29Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
肺癌早期検診では胸部X線像の肺結節検出が一般的である。
ディープラーニングに基づくコンピュータ支援診断(CAD)システムは、CXRの結節スクリーニングのために放射線科医をサポートすることができる。
このようなデータセットの可用性を損なうため,データ拡張のために肺結節合成法を提案する。
論文 参考訳(メタデータ) (2022-07-19T16:38:48Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - Synthetic COVID-19 Chest X-ray Dataset for Computer-Aided Diagnosis [1.1501261942096426]
データセットは21,295個の合成新型コロナウイルスの胸部X線画像からなり、コンピュータによる診断に使用される。
これらの画像は、教師なしのドメイン適応アプローチによって生成され、高品質である。
論文 参考訳(メタデータ) (2021-06-17T18:39:15Z) - Randomly Initialized Convolutional Neural Network for the Recognition of
COVID-19 using X-ray Images [0.0]
新型コロナウイルス(COVID-19)は世界的なパンデミックと宣言されている。
COVID-19を検出するための潜在的な解決策の1つは、ディープラーニング(DL)モデルを使用して胸部X線画像を分析することである。
本研究では,新型コロナウイルスの認識のための新しいCNNアーキテクチャを提案する。
提案したCNNモデルでは、それぞれ94%と99%の精度で、COVID-19データセットが強化されている。
論文 参考訳(メタデータ) (2021-05-17T23:40:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - Synthesis of COVID-19 Chest X-rays using Unpaired Image-to-Image
Translation [6.22964000148682]
我々は、教師なしドメイン適応アプローチを用いて、新型コロナウイルスの胸部X線画像の最初のオープンデータセットを構築した。
各種ディープラーニングアーキテクチャを用いたCOVID-19検出では,大幅な性能向上が見られた。
公開されているベンチマークデータセットは、21,295の合成新型コロナウイルスの胸部X線画像で構成されています。
論文 参考訳(メタデータ) (2020-10-20T13:37:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。