論文の概要: Smoothed Multi-View Subspace Clustering
- arxiv url: http://arxiv.org/abs/2106.09875v1
- Date: Fri, 18 Jun 2021 02:24:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 14:25:00.508995
- Title: Smoothed Multi-View Subspace Clustering
- Title(参考訳): smoothed multi-view subspace clustering
- Authors: Peng Chen, Liang Liu, Zhengrui Ma, Zhao Kang
- Abstract要約: 本研究では,スムーズなマルチビューサブスペースクラスタリング(SMVSC)という新しいマルチビュークラスタリング手法を提案する。
グラフフィルタリングという新しい手法を用いて、各ビューのスムーズな表現を得る。
ベンチマークデータセットの実験は、我々のアプローチの優位性を検証する。
- 参考スコア(独自算出の注目度): 14.77544837600836
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, multi-view subspace clustering has achieved impressive
performance due to the exploitation of complementary imformation across
multiple views. However, multi-view data can be very complicated and are not
easy to cluster in real-world applications. Most existing methods operate on
raw data and may not obtain the optimal solution. In this work, we propose a
novel multi-view clustering method named smoothed multi-view subspace
clustering (SMVSC) by employing a novel technique, i.e., graph filtering, to
obtain a smooth representation for each view, in which similar data points have
similar feature values. Specifically, it retains the graph geometric features
through applying a low-pass filter. Consequently, it produces a
``clustering-friendly" representation and greatly facilitates the downstream
clustering task. Extensive experiments on benchmark datasets validate the
superiority of our approach. Analysis shows that graph filtering increases the
separability of classes.
- Abstract(参考訳): 近年のマルチビューサブスペースクラスタリングは,複数のビューにまたがる補完的な情報の利用により,優れたパフォーマンスを達成している。
しかし、マルチビューデータは非常に複雑で、現実世界のアプリケーションでは簡単にクラスタ化できない。
ほとんどの既存手法は生データで動作し、最適解を得ることができない。
本研究では,SMVSC (S smoothed Multi-view subspace clustering) と呼ばれる新しいマルチビュークラスタリング手法を提案する。
具体的には、ローパスフィルタを適用してグラフ幾何学的特徴を保持する。
その結果、 ``clustering-friendly" 表現を生成し、ダウンストリームのクラスタリングタスクを大いに促進します。
ベンチマークデータセットに関する広範囲な実験は、我々のアプローチの優位性を検証する。
分析によると、グラフフィルタリングはクラスの分離性を高める。
関連論文リスト
- Deep Multi-View Subspace Clustering with Anchor Graph [11.291831842959926]
アンカーグラフ(DMCAG)を用いた深層多視点サブスペースクラスタリング手法を提案する。
DMCAGは各ビューの埋め込み機能を独立して学習し、サブスペース表現を得るために使用される。
本手法は他の最先端手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2023-05-11T16:17:43Z) - Deep Multiview Clustering by Contrasting Cluster Assignments [14.767319805995543]
マルチビュークラスタリングは、データサンプルをクラスタに分類することで、マルチビューデータの基盤構造を明らかにすることを目的としている。
本稿では,複数のビュー間でクラスタ割り当てを対比することで,ビュー不変表現を学習し,クラスタリング結果を生成するクロスビューコントラスト学習(C)手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T06:35:54Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Contrastive Multi-view Hyperbolic Hierarchical Clustering [33.050054725595736]
対比多視点ハイパーボリック階層クラスタリング(CMHHC)を提案する。
マルチビューアライメント学習、アライメントされた特徴類似学習、連続的な双曲的階層的クラスタリングという3つのコンポーネントで構成されている。
5つの実世界のデータセットに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-05T12:56:55Z) - Fast Multi-view Clustering via Ensembles: Towards Scalability,
Superiority, and Simplicity [63.85428043085567]
本稿では,アンサンブル(FastMICE)アプローチによる高速なマルチビュークラスタリングを提案する。
ランダムなビュー群の概念は、多目的なビューワイズ関係を捉えるために提示される。
FastMICEは、ほぼ線形時間と空間の複雑さを持ち、データセット固有のチューニングは不要である。
論文 参考訳(メタデータ) (2022-03-22T09:51:24Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Towards Clustering-friendly Representations: Subspace Clustering via
Graph Filtering [16.60975509085194]
本稿では,スムーズな表現を実現するグラフフィルタリング手法を提案する。
画像および文書クラスタリングデータセットの実験により、我々の手法は最先端のサブスペースクラスタリング技術により改善されていることを示す。
アブレーション研究では、グラフフィルタリングがノイズを除去し、画像の構造を保存し、クラスの分離性を高めることが示されている。
論文 参考訳(メタデータ) (2021-06-18T02:21:36Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Consistent and Complementary Graph Regularized Multi-view Subspace
Clustering [31.187031653119025]
本研究では,複数のビューが一貫した情報を含み,それぞれのビューが相補的な情報を含むマルチビュークラスタリングの問題について検討する。
本稿では、一貫したグラフ正規化マルチビューサブスペースクラスタリング(GRMSC)を含む手法を提案する。
目的関数は多視点クラスタリングを実現するために拡張ラグランジアン乗算法により最適化される。
論文 参考訳(メタデータ) (2020-04-07T03:48:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。