論文の概要: Deep Multiview Clustering by Contrasting Cluster Assignments
- arxiv url: http://arxiv.org/abs/2304.10769v4
- Date: Thu, 10 Aug 2023 14:46:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-11 15:55:39.873703
- Title: Deep Multiview Clustering by Contrasting Cluster Assignments
- Title(参考訳): クラスタ割り当ての対比によるディープマルチビュークラスタリング
- Authors: Jie Chen, Hua Mao, Wai Lok Woo, and Xi Peng
- Abstract要約: マルチビュークラスタリングは、データサンプルをクラスタに分類することで、マルチビューデータの基盤構造を明らかにすることを目的としている。
本稿では,複数のビュー間でクラスタ割り当てを対比することで,ビュー不変表現を学習し,クラスタリング結果を生成するクロスビューコントラスト学習(C)手法を提案する。
- 参考スコア(独自算出の注目度): 14.767319805995543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiview clustering (MVC) aims to reveal the underlying structure of
multiview data by categorizing data samples into clusters. Deep learning-based
methods exhibit strong feature learning capabilities on large-scale datasets.
For most existing deep MVC methods, exploring the invariant representations of
multiple views is still an intractable problem. In this paper, we propose a
cross-view contrastive learning (CVCL) method that learns view-invariant
representations and produces clustering results by contrasting the cluster
assignments among multiple views. Specifically, we first employ deep
autoencoders to extract view-dependent features in the pretraining stage. Then,
a cluster-level CVCL strategy is presented to explore consistent semantic label
information among the multiple views in the fine-tuning stage. Thus, the
proposed CVCL method is able to produce more discriminative cluster assignments
by virtue of this learning strategy. Moreover, we provide a theoretical
analysis of soft cluster assignment alignment. Extensive experimental results
obtained on several datasets demonstrate that the proposed CVCL method
outperforms several state-of-the-art approaches.
- Abstract(参考訳): マルチビュークラスタリング(MVC)は、データサンプルをクラスタに分類することで、マルチビューデータの基盤構造を明らかにすることを目的としている。
ディープラーニングベースの手法は、大規模データセットに強力な特徴学習能力を示す。
既存の多くのディープMVCメソッドでは、複数のビューの不変表現を探索することは、いまだに難解な問題である。
本稿では,複数ビュー間のクラスタ割り当てを対比することにより,ビュー不変表現を学習し,クラスタリング結果を生成するクロスビューコントラスト学習(cvcl)手法を提案する。
具体的には、まず、事前学習段階におけるビュー依存の特徴を抽出するために、ディープオートエンコーダを用いる。
次に、クラスタレベルのCVCL戦略を示し、微調整段階における複数のビュー間の一貫性のあるセマンティックラベル情報を探索する。
そこで,提案手法は,この学習戦略を活かして,より識別的なクラスタ割り当てを生成することができる。
さらに,ソフトクラスタ割り当てアライメントの理論解析を行う。
複数のデータセットで得られた広範囲な実験結果から,提案手法が最先端手法よりも優れていることが示された。
関連論文リスト
- Interpretable Multi-View Clustering [8.221659822719817]
本稿では,解釈可能なマルチビュークラスタリングフレームワークを提案する。
実データを用いた実験結果から,本手法は最先端クラスタリング手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2024-05-04T11:56:24Z) - CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
我々は,認知的深層不完全多視点クラスタリングネットワーク(CDIMC-net)という,新しい不完全多視点クラスタリングネットワークを提案する。
ビュー固有のディープエンコーダとグラフ埋め込み戦略をフレームワークに組み込むことで、各ビューの高レベルな特徴とローカル構造をキャプチャする。
人間の認知、すなわち、簡単からハードに学ぶことに基づいて、モデルトレーニングのための最も自信あるサンプルを選択するための自己評価戦略を導入する。
論文 参考訳(メタデータ) (2024-03-28T15:45:03Z) - Self Supervised Correlation-based Permutations for Multi-View Clustering [7.972599673048582]
汎用データのためのエンドツーエンドのディープラーニングベースのMVCフレームワークを提案する。
我々のアプローチは、新しい置換に基づく正準相関目標を用いて有意義な融合データ表現を学習することである。
10つのMVCベンチマークデータセットを用いて、モデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-26T08:08:30Z) - Consistency Enhancement-Based Deep Multiview Clustering via Contrastive Learning [16.142448870120027]
コントラスト学習(CCEC)による一貫した拡張型ディープMVC法を提案する。
具体的には、複数のビュー間の一貫性のある情報を保持するために、セマンティック接続ブロックを特徴表現に組み込む。
5つのデータセットで行った実験は、最先端(SOTA)手法と比較して、本手法の有効性と優位性を示した。
論文 参考訳(メタデータ) (2024-01-23T10:56:01Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
本研究では,多視点クラスタリングフレームワークを情報理論の観点から検討する,SUMVC(Sufficient Multi-View Clustering)と呼ばれる新しい手法を提案する。
まず,変分解析を用いて一貫した情報を生成する,シンプルで信頼性の高いマルチビュークラスタリング手法SCMVCを開発する。
次に、一貫した情報を強化し、ビュー間の不要な情報を最小限に抑えるのに十分な表現境界を提案する。
論文 参考訳(メタデータ) (2023-09-25T09:41:11Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
本稿では,多視点学習と$k$-meansを統合フレームワークに組み込んだ一段階のマルチビュークラスタリングを提案する。
そこで本研究では,効率の良い最適化アルゴリズムを開発し,その解法について述べる。
論文 参考訳(メタデータ) (2023-06-08T02:52:24Z) - MHCCL: Masked Hierarchical Cluster-Wise Contrastive Learning for
Multivariate Time Series [20.008535430484475]
Masked Hierarchical Cluster-wise Contrastive Learning modelを示す。
時系列の複数の潜在パーティションからなる階層構造から得られる意味情報を利用する。
教師なし時系列表現学習における最先端の手法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2022-12-02T12:42:53Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。