Smoothed Multi-View Subspace Clustering
- URL: http://arxiv.org/abs/2106.09875v1
- Date: Fri, 18 Jun 2021 02:24:19 GMT
- Title: Smoothed Multi-View Subspace Clustering
- Authors: Peng Chen, Liang Liu, Zhengrui Ma, Zhao Kang
- Abstract summary: We propose a novel multi-view clustering method named smoothed multi-view subspace clustering (SMVSC)
It employs a novel technique, i.e., graph filtering, to obtain a smooth representation for each view.
Experiments on benchmark datasets validate the superiority of our approach.
- Score: 14.77544837600836
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, multi-view subspace clustering has achieved impressive
performance due to the exploitation of complementary imformation across
multiple views. However, multi-view data can be very complicated and are not
easy to cluster in real-world applications. Most existing methods operate on
raw data and may not obtain the optimal solution. In this work, we propose a
novel multi-view clustering method named smoothed multi-view subspace
clustering (SMVSC) by employing a novel technique, i.e., graph filtering, to
obtain a smooth representation for each view, in which similar data points have
similar feature values. Specifically, it retains the graph geometric features
through applying a low-pass filter. Consequently, it produces a
``clustering-friendly" representation and greatly facilitates the downstream
clustering task. Extensive experiments on benchmark datasets validate the
superiority of our approach. Analysis shows that graph filtering increases the
separability of classes.
Related papers
- Deep Multi-View Subspace Clustering with Anchor Graph [11.291831842959926]
We propose a novel deep multi-view subspace clustering method with anchor graph (DMCAG)
DMCAG learns the embedded features for each view independently, which are used to obtain the subspace representations.
Our method achieves superior clustering performance over other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-11T16:17:43Z) - Deep Multiview Clustering by Contrasting Cluster Assignments [14.767319805995543]
Multiview clustering aims to reveal the underlying structure of multiview data by categorizing data samples into clusters.
We propose a cross-view contrastive learning (C) method that learns view-invariant representations and produces clustering results by contrasting the cluster assignments among multiple views.
arXiv Detail & Related papers (2023-04-21T06:35:54Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Contrastive Multi-view Hyperbolic Hierarchical Clustering [33.050054725595736]
We propose Contrastive Multi-view Hyperbolic Hierarchical Clustering (CMHHC)
It consists of three components, i.e., multi-view alignment learning, aligned feature similarity learning, and continuous hyperbolic hierarchical clustering.
Experimental results on five real-world datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-05-05T12:56:55Z) - Fast Multi-view Clustering via Ensembles: Towards Scalability,
Superiority, and Simplicity [63.85428043085567]
We propose a fast multi-view clustering via ensembles (FastMICE) approach.
The concept of random view groups is presented to capture the versatile view-wise relationships.
FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning.
arXiv Detail & Related papers (2022-03-22T09:51:24Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Towards Clustering-friendly Representations: Subspace Clustering via
Graph Filtering [16.60975509085194]
We propose a graph filtering approach by which a smooth representation is achieved.
Experiments on image and document clustering datasets demonstrate that our method improves upon state-of-the-art subspace clustering techniques.
An ablation study shows that graph filtering can remove noise, preserve structure in the image, and increase the separability of classes.
arXiv Detail & Related papers (2021-06-18T02:21:36Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Consistent and Complementary Graph Regularized Multi-view Subspace
Clustering [31.187031653119025]
This study investigates the problem of multi-view clustering, where multiple views contain consistent information and each view also includes complementary information.
We propose a method that involves consistent and complementary graph-regularized multi-view subspace clustering (GRMSC)
The objective function is optimized by the augmented Lagrangian multiplier method in order to achieve multi-view clustering.
arXiv Detail & Related papers (2020-04-07T03:48:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.