論文の概要: A Unified Generative Adversarial Network Training via Self-Labeling and
Self-Attention
- arxiv url: http://arxiv.org/abs/2106.09914v1
- Date: Fri, 18 Jun 2021 04:40:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 14:17:15.401257
- Title: A Unified Generative Adversarial Network Training via Self-Labeling and
Self-Attention
- Title(参考訳): 自己ラベルと自己アテンションによる一元的対人ネットワークトレーニング
- Authors: Tomoki Watanabe, Paolo Favaro
- Abstract要約: 本稿では,任意のレベルのラベリングを統一的に処理できる新しいGANトレーニング手法を提案する。
提案手法では,手動で定義したラベルを組み込むことができる人工ラベル方式を導入する。
我々は, CIFAR-10, STL-10, SVHNに対するアプローチを評価し, 自己ラベルと自己アテンションの両方が生成データの品質を継続的に向上することを示す。
- 参考スコア(独自算出の注目度): 38.31735499785227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel GAN training scheme that can handle any level of labeling
in a unified manner. Our scheme introduces a form of artificial labeling that
can incorporate manually defined labels, when available, and induce an
alignment between them. To define the artificial labels, we exploit the
assumption that neural network generators can be trained more easily to map
nearby latent vectors to data with semantic similarities, than across separate
categories. We use generated data samples and their corresponding artificial
conditioning labels to train a classifier. The classifier is then used to
self-label real data. To boost the accuracy of the self-labeling, we also use
the exponential moving average of the classifier. However, because the
classifier might still make mistakes, especially at the beginning of the
training, we also refine the labels through self-attention, by using the
labeling of real data samples only when the classifier outputs a high
classification probability score. We evaluate our approach on CIFAR-10, STL-10
and SVHN, and show that both self-labeling and self-attention consistently
improve the quality of generated data. More surprisingly, we find that the
proposed scheme can even outperform class-conditional GANs.
- Abstract(参考訳): 本稿では,任意のレベルのラベリングを統一的に処理できる新しいGANトレーニング手法を提案する。
提案手法では,手動で定義したラベルを組み込んだ人工ラベリングを導入し,それらのアライメントを誘導する。
人工ラベルを定義するために、ニューラルネットワークジェネレータは、複数のカテゴリにまたがるよりも、近隣の潜在ベクトルをセマンティックな類似性のあるデータにマッピングするために、より容易に訓練できるという仮定を利用する。
生成されたデータサンプルとその対応する人工条件ラベルを用いて分類器を訓練する。
分類器は、実データを自己ラベルするために使用される。
自己ラベルの精度を高めるために,分類器の指数移動平均を用いる。
しかし,分類器がまだ誤りを犯す可能性があるため,分類器が高い分類確率スコアを出力した場合のみ,実データサンプルのラベル付けを使用することで,自己注意によるラベルの洗練を図る。
我々は, CIFAR-10, STL-10, SVHNに対するアプローチを評価し, 自己ラベルと自己アテンションの両方が生成データの品質を継続的に向上することを示す。
さらに驚くべきことに、提案手法はクラス条件のGANよりも優れている。
関連論文リスト
- Reduction-based Pseudo-label Generation for Instance-dependent Partial Label Learning [41.345794038968776]
本稿では,誤り候補ラベルの影響を軽減するために,リダクションに基づく擬似ラベルを活用することを提案する。
推定モデルから生成した擬似ラベルと比較して,減算に基づく擬似ラベルはベイズ最適分類器との整合性が高いことを示す。
論文 参考訳(メタデータ) (2024-10-28T07:32:20Z) - Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
遠隔教師付きラベルに分類器のトレーニング力学に基づいて重みを割り当てる新しいコトレーニング手法を提案する。
予測された信頼度に対する任意のしきい値に基づいてサンプルをフィルタリングするのではなく、重要重みを割り当てることにより、自動ラベル付きデータの使用を最大化する。
提案手法は、遠隔監視ベースラインに対するマクロF1の1.5%の改善と、他の強力なSSLベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-20T18:35:47Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Label distribution learning via label correlation grid [9.340734188957727]
ラベル関係の不確かさをモデル化するための textbfLabel textbfCorrelation textbfGrid (LCG) を提案する。
我々のネットワークはLCGを学習し、各インスタンスのラベル分布を正確に推定する。
論文 参考訳(メタデータ) (2022-10-15T03:58:15Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
本稿では,疑似ラベルの重み付けがモデル性能に悪影響を及ぼすような,不均衡な半教師付き学習に対処する。
本稿では,この観測の動機となるバイアスに対処する,一般的な擬似ラベルフレームワークを提案する。
不均衡SSLのための新しい擬似ラベルフレームワークを、DASO(Distributed-Aware Semantics-Oriented Pseudo-label)と呼ぶ。
論文 参考訳(メタデータ) (2021-06-10T11:58:25Z) - Cycle Self-Training for Domain Adaptation [85.14659717421533]
Cycle Self-Training (CST) は、ドメイン間の一般化に擬似ラベルを強制する、原則付き自己学習アルゴリズムである。
CSTは目標の真理を回復し、不変の機能学習とバニラ自己訓練の両方が失敗する。
実験結果から,標準的なUDAベンチマークでは,CSTは先行技術よりも大幅に改善されていることが示唆された。
論文 参考訳(メタデータ) (2021-03-05T10:04:25Z) - Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed
Self-Training [38.81973113564937]
セルフトレーニングは、学習者がラベルのないデータに関する予測をトレーニング中の監督として使用する半教師付き学習の標準的なアプローチです。
本稿では,このラベル割当問題を事例とクラス間の最適輸送問題として再解釈する。
我々は,CIFAR-10,CIFAR-100,SVHNデータセットに対するアルゴリズムの有効性を,最先端の自己学習アルゴリズムであるFixMatchと比較した。
論文 参考訳(メタデータ) (2021-02-17T08:23:15Z) - Label Confusion Learning to Enhance Text Classification Models [3.0251266104313643]
ラベル混乱モデル(lcm)はラベル間の意味的重複を捉えるためにラベル混乱を学習する。
lcmは、元のホットラベルベクトルを置き換えるより優れたラベル分布を生成することができる。
5つのテキスト分類ベンチマークデータセットの実験により、広く使われているディープラーニング分類モデルに対するLCMの有効性が明らかにされた。
論文 参考訳(メタデータ) (2020-12-09T11:34:35Z) - Semi-Supervised Speech Recognition via Graph-based Temporal
Classification [59.58318952000571]
半教師付き学習は自己学習による自動音声認識において有望な結果を示した。
このアプローチの有効性は、主に擬似ラベルの精度に依存する。
N-bestリストの別のASR仮説は、ラベルなしの発話に対してより正確なラベルを提供することができる。
論文 参考訳(メタデータ) (2020-10-29T14:56:56Z) - Probabilistic Decoupling of Labels in Classification [4.865747672937677]
非標準分類タスクに対する原則的,確率的,統一的なアプローチを開発する。
ラベル分布を予測するために、与えられたラベルの分類器を訓練する。
次に、ラベルクラス遷移のモデルを変動的に最適化することで、基礎となるクラス分布を推定する。
論文 参考訳(メタデータ) (2020-06-16T10:07:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。