論文の概要: Goal-Directed Planning by Reinforcement Learning and Active Inference
- arxiv url: http://arxiv.org/abs/2106.09938v2
- Date: Tue, 22 Jun 2021 10:14:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 11:20:10.624079
- Title: Goal-Directed Planning by Reinforcement Learning and Active Inference
- Title(参考訳): 強化学習とアクティブ推論によるゴール指向計画
- Authors: Dongqi Han, Kenji Doya and Jun Tani
- Abstract要約: ベイジアン推論を用いた新たな意思決定フレームワークを提案する。
ゴール指向の振る舞いは、計画によって$z$の後方分布から決定される。
本稿では,カメラ観測と連続運動動作を用いたセンサモレータナビゲーションタスクの実験により,提案手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 16.694117274961016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: What is the difference between goal-directed and habitual behavior? We
propose a novel computational framework of decision making with Bayesian
inference, in which everything is integrated as an entire neural network model.
The model learns to predict environmental state transitions by self-exploration
and generating motor actions by sampling stochastic internal states ${z}$.
Habitual behavior, which is obtained from the prior distribution of ${z}$, is
acquired by reinforcement learning. Goal-directed behavior is determined from
the posterior distribution of ${z}$ by planning, using active inference which
optimizes the past, current and future ${z}$ by minimizing the variational free
energy for the desired future observation constrained by the observed sensory
sequence. We demonstrate the effectiveness of the proposed framework by
experiments in a sensorimotor navigation task with camera observations and
continuous motor actions.
- Abstract(参考訳): 目標指向行動と習慣行動の違いは何か?
ベイズ推論を用いた意思決定の新たな計算フレームワークを提案する。
このモデルは、確率的内部状態${z}$をサンプリングすることで、自己探索と運動行動の生成により環境状態遷移を予測することを学ぶ。
以前の${z}$の分布から得られる習慣行動は、強化学習によって取得される。
目標指向行動は,過去,現在,未来を最適化する能動的推論を用いて,観測されたセンサシーケンスに制約された将来の観測に対する変動自由エネルギーを最小化することにより,${z}$の後方分布から決定される。
本稿では,カメラ観測と連続運動動作を用いたセンサモレータナビゲーションタスクの実験により,提案手法の有効性を実証する。
関連論文リスト
- A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
アクティブ推論フレームワーク(英: active inference framework、AIF)は、現代の神経科学を基盤とした、有望な新しい計算フレームワークである。
本研究では,ヒトの視覚行動指導において,AIFが期待する役割を捉える能力をテストする。
本稿では,多次元世界状態から自由エネルギーの一次元分布にマッピングする先行関数の新たな定式化について述べる。
論文 参考訳(メタデータ) (2022-11-16T20:00:38Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
本稿では,出力確率,時間的予測,モジュール型人工ニューラルネットワークアーキテクチャを提案する。
我々のアーキテクチャは、割当マップと解釈できる潜在状態が発達していることを示す。
アクティブな推論と組み合わせることで、フレキシブルでゴール指向の動作が実行可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T14:13:04Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
エージェント間の相互作用と将来のシーン構造を予測するIPC(Instance-Aware Predictive Control)アプローチを提案する。
我々は,ego中心の視点でエージェント間のインタラクションを推定するために,新しいマルチインスタンスイベント予測モジュールを採用する。
シーンレベルとインスタンスレベルの両方の予測状態をより有効活用するために、一連のアクションサンプリング戦略を設計します。
論文 参考訳(メタデータ) (2021-01-14T22:21:25Z) - Inverse reinforcement learning for autonomous navigation via
differentiable semantic mapping and planning [20.66819092398541]
本稿では,距離と意味カテゴリー観測を用いた自律ナビゲーションのための逆強化学習について述べる。
観測シーケンスから意味的カテゴリ確率を推測するマップエンコーダと、意味論的特徴に対するディープニューラルネットワークとして定義されるコストエンコーダを開発している。
本研究では,建物,歩道,路面のセマンティックな観察に頼って,自律走行型CARLAシミュレータの交通ルールを追従する手法を提案する。
論文 参考訳(メタデータ) (2021-01-01T07:41:08Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable
Semantic Representations [81.05412704590707]
本稿では,自動運転車の協調認識,予測,動作計画を行うエンド・ツー・エンドの学習可能なネットワークを提案する。
私たちのネットワークは、人間のデモからエンドツーエンドに学習されます。
論文 参考訳(メタデータ) (2020-08-13T14:40:46Z) - Tracking Emotions: Intrinsic Motivation Grounded on Multi-Level
Prediction Error Dynamics [68.8204255655161]
目標達成に向けての進捗率と期待率の差が生じると、感情がどのように生じるかについて議論する。
自己生成的・動的目標に向けた行動を生成する本質的なモチベーションアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-07-29T06:53:13Z) - Learning Navigation Costs from Demonstration with Semantic Observations [24.457042947946025]
本稿では,自律型ロボットナビゲーションにおける意味的観察を用いた逆強化学習(IRL)に焦点を当てた。
観測シーケンスからセマンティッククラス確率を推定するマップエンコーダと、セマンティックな特徴よりもディープニューラルネットワークとして定義されるコストエンコーダを開発する。
提案手法は,自動車,歩道,道路路面のセマンティックな観察に頼って,自律走行CARLAシミュレータにおける交通ルールに従うことを学習していることを示す。
論文 参考訳(メタデータ) (2020-06-09T04:35:57Z) - Learning Navigation Costs from Demonstration in Partially Observable
Environments [24.457042947946025]
本稿では、未知の部分観測可能な環境における安全かつ効率的な自律ナビゲーションを実現するために、逆強化学習(IRL)に焦点を当てる。
本研究では, 確率的占有エンコーダと, 占有特性に繰り返し依存するコストエンコーダの2つの部分からなるコスト関数表現を開発する。
本モデルは,ロボットナビゲーションタスクにおけるベースラインIRLアルゴリズムの精度を上回り,トレーニングとテストタイム推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2020-02-26T17:15:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。