論文の概要: Shape Prior Non-Uniform Sampling Guided Real-time Stereo 3D Object
Detection
- arxiv url: http://arxiv.org/abs/2106.10013v3
- Date: Tue, 22 Jun 2021 03:35:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 11:19:55.506709
- Title: Shape Prior Non-Uniform Sampling Guided Real-time Stereo 3D Object
Detection
- Title(参考訳): shape prior non-uniform sampling guided real-time stereo 3d object detection
- Authors: Aqi Gao, Jiale Cao, Yanwei Pang
- Abstract要約: 最近導入されたRTS3Dは、深度監督のないオブジェクトの中間表現のための効率的な4次元特徴整合埋め込み空間を構築している。
本研究では, 内部領域で高密度サンプリングを行い, 内部領域でスパースサンプリングを行う非一様サンプリング方式を提案する。
提案手法は,ネットワークパラメータをほとんど含まないAP3dに対して2.57%の改善を実現している。
- 参考スコア(独自算出の注目度): 59.765645791588454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pseudo-LiDAR based 3D object detectors have gained popularity due to their
high accuracy. However, these methods need dense depth supervision and suffer
from inferior speed. To solve these two issues, a recently introduced RTS3D
builds an efficient 4D Feature-Consistency Embedding (FCE) space for the
intermediate representation of object without depth supervision. FCE space
splits the entire object region into 3D uniform grid latent space for feature
sampling point generation, which ignores the importance of different object
regions. However, we argue that, compared with the inner region, the outer
region plays a more important role for accurate 3D detection. To encode more
information from the outer region, we propose a shape prior non-uniform
sampling strategy that performs dense sampling in outer region and sparse
sampling in inner region. As a result, more points are sampled from the outer
region and more useful features are extracted for 3D detection. Further, to
enhance the feature discrimination of each sampling point, we propose a
high-level semantic enhanced FCE module to exploit more contextual information
and suppress noise better. Experiments on the KITTI dataset are performed to
show the effectiveness of the proposed method. Compared with the baseline
RTS3D, our proposed method has 2.57% improvement on AP3d almost without extra
network parameters. Moreover, our proposed method outperforms the
state-of-the-art methods without extra supervision at a real-time speed.
- Abstract(参考訳): 擬似LiDARベースの3Dオブジェクト検出器は高い精度で人気を博している。
しかし,これらの手法では深度監視が必要であり,低速化に苦しむ。
これら2つの問題を解決するため、最近発表されたRTS3Dは、深度監督なしでオブジェクトの中間表現のための効率的な4D特徴-一貫性埋め込み(FCE)空間を構築した。
fce空間は、異なるオブジェクト領域の重要性を無視する特徴サンプリングポイント生成のために、オブジェクト領域全体を3次元一様グリッド潜在空間に分割する。
しかし, 内部領域と比較すると, 外側領域は正確な3d検出に重要な役割を担っている。
外側領域からより多くの情報をエンコードするために,外側領域で密サンプリングを行い,内側領域でスパースサンプリングを行う,事前の非一様サンプリング戦略を提案する。
その結果、外部領域からより多くの点をサンプリングし、3次元検出に有用な特徴を抽出する。
さらに,各サンプリング点の特徴識別を強化するために,よりコンテキスト情報を活用し,ノイズを抑える高レベルな意味強化FCEモジュールを提案する。
提案手法の有効性を示すため,KITTIデータセットの実験を行った。
ベースラインRTS3Dと比較して,提案手法はネットワークパラメータをほとんど含まないAP3dに対して2.57%改善されている。
さらに,提案手法は,リアルタイムに余分な監視を行わず,最先端の手法よりも優れた性能を示す。
関連論文リスト
- AVS-Net: Point Sampling with Adaptive Voxel Size for 3D Scene Understanding [16.03214439663472]
本稿では,精度と効率性を両立する高度サンプリング器を提案する。
本稿では,Voxel Adaptation Module(Voxel Adaptation Module,Voxel Adaptation Module,Voxel Adaptation Module,Voxel Adaptation Module,Voxel Adaptation Module,Voxel Adaptation Module)を提案する。
既存の最先端手法と比較して,本手法は屋外および屋内の大規模データセットの精度を向上する。
論文 参考訳(メタデータ) (2024-02-27T14:05:05Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
本稿では,3次元小物体検出のための効率的な特徴解析手法を提案する。
空間分解能の高いDSPDet3Dというマルチレベル3次元検出器を提案する。
ほぼ全ての物体を検知しながら、4500k以上のポイントからなる建物全体を直接処理するには2秒もかからない。
論文 参考訳(メタデータ) (2023-05-05T17:57:04Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - EGFN: Efficient Geometry Feature Network for Fast Stereo 3D Object
Detection [51.52496693690059]
高速ステレオベース3Dオブジェクト検出器は高精度指向法よりもはるかに遅れている。
主な理由として,高速ステレオ法における3次元幾何学的特徴表現の欠如や不足があげられる。
提案された EGFN は、YOLOStsereo3D よりも5.16%向上し、mAP$_3d$ をわずか12msで上回った。
論文 参考訳(メタデータ) (2021-11-28T05:25:36Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency
Embedding Space for Autonomous Driving [3.222802562733787]
RTS3Dというステレオ画像から効率的かつ高精度な3次元物体検出法を提案する。
KITTIベンチマークの実験は、RTS3Dがステレオ画像3D検出のための最初の真のリアルタイムシステムであることを示しています。
論文 参考訳(メタデータ) (2020-12-30T07:56:37Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3Dオブジェクト検出は、自動運転のシナリオにおいて新たな課題となっている。
以前の作業では、プロジェクションベースまたはボクセルベースのモデルを使用して3Dポイントクラウドを処理していた。
本稿では,意味情報と空間情報の同時利用が可能なStereo RGBおよびDeeper LIDARフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-09T11:19:24Z) - Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object
Detection from Point Clouds [32.916690488130506]
本稿では,3次元検出器が境界を意識して点雲の最も密集した領域に焦点を合わせるのを支援する普遍モジュールを提案する。
KITTIデータセットの実験により、DENFIはベースライン単段検出器の性能を著しく改善することが示された。
論文 参考訳(メタデータ) (2020-04-01T01:21:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。