論文の概要: Parallel frequency function-deep neural network for efficient complex
broadband signal approximation
- arxiv url: http://arxiv.org/abs/2106.10401v1
- Date: Sat, 19 Jun 2021 01:39:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-25 04:42:53.454712
- Title: Parallel frequency function-deep neural network for efficient complex
broadband signal approximation
- Title(参考訳): 複素ブロードバンド信号近似のための並列周波数関数-ディープニューラルネットワーク
- Authors: Zhi Zeng, Pengpeng Shi, Fulei Ma, Peihan Qi
- Abstract要約: ニューラルネットワークは本質的に、特徴フィッティングのためのネットワーク重みを調整することで、高次元の複雑なマッピングモデルである。
ネットワークトレーニングにおけるスペクトルバイアスは、ブロードバンド信号に高周波成分を適合させるには耐え難い訓練エポックをもたらす。
並列周波数関数ディープニューラルネットワーク(PFF-DNN)を提案する。
- 参考スコア(独自算出の注目度): 1.536989504296526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A neural network is essentially a high-dimensional complex mapping model by
adjusting network weights for feature fitting. However, the spectral bias in
network training leads to unbearable training epochs for fitting the
high-frequency components in broadband signals. To improve the fitting
efficiency of high-frequency components, the PhaseDNN was proposed recently by
combining complex frequency band extraction and frequency shift techniques [Cai
et al. SIAM J. SCI. COMPUT. 42, A3285 (2020)]. Our paper is devoted to an
alternative candidate for fitting complex signals with high-frequency
components. Here, a parallel frequency function-deep neural network (PFF-DNN)
is proposed to suppress computational overhead while ensuring fitting accuracy
by utilizing fast Fourier analysis of broadband signals and the spectral bias
nature of neural networks. The effectiveness and efficiency of the proposed
PFF-DNN method are verified based on detailed numerical experiments for six
typical broadband signals.
- Abstract(参考訳): ニューラルネットワークは本質的に、特徴フィッティングのためのネットワーク重みを調整することで、高次元の複雑なマッピングモデルである。
しかし、ネットワークトレーニングにおけるスペクトルバイアスは、広帯域信号の高周波成分を適合させるための耐え難いトレーニングエポックをもたらす。
高周波部品の取付け効率を向上させるため, 複雑な周波数帯域抽出と周波数シフト技術を組み合わせたフェーズDNNが最近提案されている [Cai et al]。
SIAM J. SCI
計算。
42, A3285 (2020)]
本稿では,高周波成分を用いた複素信号の代替候補を提案する。
本稿では、ブロードバンド信号の高速フーリエ解析とニューラルネットワークのスペクトルバイアス特性を利用して、計算オーバーヘッドを抑えるために並列周波数関数ディープニューラルネットワーク(PFF-DNN)を提案する。
6つの典型的なブロードバンド信号に対する詳細な数値実験に基づいて,提案手法の有効性と効率を検証した。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
入射神経表現(INR)は、複雑な信号の連続的および分解非依存的な表現を提供するためにニューラルネットワークを使用する。
提案したFKANは、第1層のフーリエ級数としてモデル化された学習可能なアクティベーション関数を用いて、タスク固有の周波数成分を効果的に制御し、学習する。
実験結果から,提案したFKANモデルは,最先端の3つのベースラインスキームよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-14T05:53:33Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
ランダム関数リンクニューラルネットワーク(RFLNN)は、深い構造を学習する別の方法を提供する。
本稿では周波数領域の観点からRFLNNの特性について考察する。
本稿では,より優れた性能でBLSネットワークを生成する手法を提案し,ポゾン方程式を解くための効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-04-03T13:25:22Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Trainable Wavelet Neural Network for Non-Stationary Signals [0.0]
本研究は,非定常信号に適合するフィルタバンクを学習するためのウェーブレットニューラルネットワークを導入し,デジタル信号処理の解釈性と性能を向上させる。
このネットワークは、複雑なモレットウェーブレットのパラメータ化関数である畳み込みがニューラルネットワークの第1層としてウェーブレット変換を使用する。
論文 参考訳(メタデータ) (2022-05-06T16:41:27Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
提案手法は、まずゼロフォース検出器(ZF)を用いて受信信号を前処理し、その後、畳み込みニューラルネットワーク(CNN)と完全連結ニューラルネットワーク(FCNN)からなるニューラルネットワークを用いる。
FCNN部は2つの完全に接続された層しか使用せず、複雑さとBER(bit error rate)パフォーマンスのトレードオフをもたらすことができる。
提案したディープ畳み込みニューラルネットワークに基づく検出・復調方式は,ZF検出器よりも高いBER性能を示し,複雑性が増大することが実証されている。
論文 参考訳(メタデータ) (2022-02-06T22:18:42Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - Time-Frequency Analysis based Deep Interference Classification for
Frequency Hopping System [2.8123846032806035]
干渉分類は、認証された通信システムを保護する上で重要な役割を果たす。
本稿では,周波数ホッピング通信システムにおける干渉分類問題について述べる。
周波数ホッピング系における多重干渉の可能性を考慮すると、線形および双線形変換に基づく複合時間周波数解析法が採用されている。
論文 参考訳(メタデータ) (2021-07-21T14:22:40Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。