論文の概要: Predicting Critical Nodes in Temporal Networks by Dynamic Graph
Convolutional Networks
- arxiv url: http://arxiv.org/abs/2106.10419v1
- Date: Sat, 19 Jun 2021 04:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 15:44:52.876596
- Title: Predicting Critical Nodes in Temporal Networks by Dynamic Graph
Convolutional Networks
- Title(参考訳): 動的グラフ畳み込みネットワークによる時間ネットワークの臨界ノード予測
- Authors: En-Yu Yu, Yan Fu, Jun-Lin Zhou, Hong-Liang Sun, Duan-Bing Chen
- Abstract要約: ネットワーク構造が時間とともに変化するため、クリティカルノードを特定することは困難である。
本稿では,特殊なGCNとRNNを組み合わせた,新しい効果的な学習フレームワークを提案する。
4つの実世界の時間ネットワークに対する実験結果から,提案手法は従来のベンチマーク法とディープラーニングベンチマーク法の両方より優れていることが示された。
- 参考スコア(独自算出の注目度): 1.213512753726579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world systems can be expressed in temporal networks with nodes
playing far different roles in structure and function and edges representing
the relationships between nodes. Identifying critical nodes can help us control
the spread of public opinions or epidemics, predict leading figures in
academia, conduct advertisements for various commodities, and so on. However,
it is rather difficult to identify critical nodes because the network structure
changes over time in temporal networks. In this paper, considering the sequence
topological information of temporal networks, a novel and effective learning
framework based on the combination of special GCNs and RNNs is proposed to
identify nodes with the best spreading ability. The effectiveness of the
approach is evaluated by weighted Susceptible-Infected-Recovered model.
Experimental results on four real-world temporal networks demonstrate that the
proposed method outperforms both traditional and deep learning benchmark
methods in terms of the Kendall $\tau$ coefficient and top $k$ hit rate.
- Abstract(参考訳): 多くの実世界のシステムは、構造と機能において非常に異なる役割を果たすノードと、ノード間の関係を表すエッジを持つ時間的ネットワークで表現することができる。
クリティカルノードの特定は、公衆の意見や流行の拡散を制御したり、学界の指導的人物を予測したり、さまざまな商品の広告を行うのに役立ちます。
しかし,ネットワーク構造が時間とともに変化するため,重要なノードを特定することは困難である。
本稿では,時間ネットワークの時系列トポロジ情報を考慮し,特定のGCNとRNNの組み合わせに基づく新しい効果的な学習フレームワークを提案し,最適な拡散能力を持つノードを同定する。
本手法の有効性は, 重み付き感受性感染回復モデルを用いて評価した。
4つの実世界の時間ネットワークによる実験結果から,提案手法はKendall $\tau$係数とトップ$k$ヒット率で従来のベンチマーク手法とディープラーニングのベンチマーク手法より優れていることが示された。
関連論文リスト
- Multi-perspective Memory Enhanced Network for Identifying Key Nodes in Social Networks [51.54002032659713]
ソーシャルネットワークにおけるキーノードを識別する新しいマルチパースペクティブメモリ拡張ネットワーク(MMEN)を提案する。
MMENは複数の視点からキーノードをマイニングし、履歴情報を記憶するためにメモリネットワークを利用する。
我々の手法は過去の方法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-03-22T14:29:03Z) - DANI: Fast Diffusion Aware Network Inference with Preserving Topological
Structure Property [2.8948274245812327]
そこで我々は,DANIと呼ばれる新しい手法を提案し,その構造特性を保ちながら基礎となるネットワークを推定する。
DANIは、モジュール構造、次数分布、連結成分、密度、クラスタリング係数を含む構造特性を維持しながら、より高い精度と低い実行時間を有する。
論文 参考訳(メタデータ) (2023-10-02T23:23:00Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z) - DyCSC: Modeling the Evolutionary Process of Dynamic Networks Based on
Cluster Structure [1.005130974691351]
動的クラスタ構造制約モデル(DyCSC)と呼ばれる新しい時間ネットワーク埋め込み手法を提案する。
DyCSCは、ネットワーク内のノードの傾向に時間的制約を課すことで、時間的ネットワークの進化を捉えている。
複数の時間リンク予測タスクにおいて、競合する手法をかなりのマージンで一貫して上回る。
論文 参考訳(メタデータ) (2022-10-23T10:23:08Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
時間的ネットワーク上での機械学習の方法は、一般的に2つの制限のうちの少なくとも1つを示す。
ネットワークのライングラフは,各インタラクションのノードを含むもので,インタラクション間の時間差に基づいて,このグラフのエッジを重み付けする。
実世界のネットワークにおける実験結果から,エッジ分類と時間リンク予測の両方において,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-09-30T18:24:13Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - TempNodeEmb:Temporal Node Embedding considering temporal edge influence
matrix [0.8941624592392746]
時間的ネットワークにおけるノード間の将来のリンクを予測することは、時間的ネットワークの進化の重要な側面を明らかにする。
いくつかのアプローチは、時間ネットワークの単純化された表現を、高次元で一般にスパース行列で考える。
本稿では, 単純な3層グラフニューラルネットワークを各ステップで考慮し, ネットワークの進化特性を利用した新しいノード埋め込み手法を提案する。
論文 参考訳(メタデータ) (2020-08-16T15:39:07Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z) - Temporal Network Representation Learning via Historical Neighborhoods
Aggregation [28.397309507168128]
本稿では,EHNAアルゴリズムによる埋め込みを提案する。
まず,歴史地区のノードを特定できる時間的ランダムウォークを提案する。
次に,ノード埋め込みを誘導するカスタムアテンション機構を用いたディープラーニングモデルを適用する。
論文 参考訳(メタデータ) (2020-03-30T04:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。