論文の概要: GNN-Based Candidate Node Predictor for Influence Maximization in Temporal Graphs
- arxiv url: http://arxiv.org/abs/2503.23713v1
- Date: Mon, 31 Mar 2025 04:28:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:33:55.748861
- Title: GNN-Based Candidate Node Predictor for Influence Maximization in Temporal Graphs
- Title(参考訳): 時間グラフにおける影響最大化のためのGNNに基づく候補ノード予測器
- Authors: Priyanka Gautam, Balasubramaniam Natarajan, Sai Munikoti, S M Ferdous, Mahantesh Halappanavar,
- Abstract要約: 本稿では,グラフネットワークとBidirectional Long Short-Term Memory (BiLSTM)モデルを統合する学習ベースアプローチを提案する。
BiLSTMは、過去と将来のネットワーク状態からパターンを分析し、時間の経過とともに変更への適応性を保証します。
本手法は,時間的ダイナミクスの理解が不可欠であるバイラルマーケティングやソーシャルネットワーク分析などの分野において,特に有効である。
- 参考スコア(独自算出の注目度): 3.3853959586196645
- License:
- Abstract: In an age where information spreads rapidly across social media, effectively identifying influential nodes in dynamic networks is critical. Traditional influence maximization strategies often fail to keep up with rapidly evolving relationships and structures, leading to missed opportunities and inefficiencies. To address this, we propose a novel learning-based approach integrating Graph Neural Networks (GNNs) with Bidirectional Long Short-Term Memory (BiLSTM) models. This hybrid framework captures both structural and temporal dynamics, enabling accurate prediction of candidate nodes for seed set selection. The bidirectional nature of BiLSTM allows our model to analyze patterns from both past and future network states, ensuring adaptability to changes over time. By dynamically adapting to graph evolution at each time snapshot, our approach improves seed set calculation efficiency, achieving an average of 90% accuracy in predicting potential seed nodes across diverse networks. This significantly reduces computational overhead by optimizing the number of nodes evaluated for seed selection. Our method is particularly effective in fields like viral marketing and social network analysis, where understanding temporal dynamics is crucial.
- Abstract(参考訳): 情報がソーシャルメディアに急速に広まる時代には、動的ネットワークにおける影響力のあるノードを効果的に特定することが重要である。
伝統的な影響力の最大化戦略は、しばしば急速に進化する関係や構造に追随せず、機会や非効率を逃す。
そこで本稿では,グラフニューラルネットワーク(GNN)とBidirectional Long Short-Term Memory(BiLSTM)モデルを統合する新しい学習手法を提案する。
このハイブリッドフレームワークは、構造的および時間的ダイナミクスの両方をキャプチャし、シードセットの選択のための候補ノードの正確な予測を可能にする。
BiLSTMの双方向性により、我々のモデルは過去と将来のネットワーク状態からパターンを分析し、時間とともに変化への適応性を確保することができる。
グラフの更新を各スナップショットで動的に行うことにより、シードセットの計算効率が向上し、さまざまなネットワークにまたがる潜在的なシードノードの予測において、平均90%の精度が達成される。
これにより、シード選択で評価されたノード数を最適化することで、計算オーバーヘッドを大幅に削減できる。
本手法は,時間的ダイナミクスの理解が不可欠であるバイラルマーケティングやソーシャルネットワーク分析などの分野において,特に有効である。
関連論文リスト
- ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning [31.629956388962814]
ScaDyGは動的グラフネットワークのためのタイムアウェアなスケーラブルな学習パラダイムである。
12のデータセットの実験では、ScaDyGは、ノードレベルとリンクレベルの両方の下流タスクにおいて、互換性のあるパフォーマンス、あるいは他のSOTAメソッドよりも優れています。
論文 参考訳(メタデータ) (2025-01-27T12:39:16Z) - Temporal Link Prediction Using Graph Embedding Dynamics [0.0]
動的ネットワークにおける時間的リンク予測は、複雑な科学的および現実世界の問題を解く可能性から特に関心がある。
時間的リンク予測への伝統的なアプローチは、ネットワークのダイナミックスの集約を統一的な出力として見つけることに集中してきた。
本稿では,ノードをニュートンオブジェクトとして定義し,ネットワークダイナミクスの予測に速度の概念を取り入れることで,時間的リンク予測の新しい視点を提案する。
論文 参考訳(メタデータ) (2024-01-15T07:35:29Z) - Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
本稿では,グラフニューラルネットワーク(GNN)におけるメッセージ伝搬戦略の学習問題について検討する。
本稿では,GNNパラメータの最大類似度推定を支援するために,最適伝搬ステップを潜時変数として導入する。
提案フレームワークは,GNNにおけるメッセージのパーソナライズおよび解釈可能な伝達戦略を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-10-01T15:09:59Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - Taming Local Effects in Graph-based Spatiotemporal Forecasting [28.30604130617646]
時相グラフニューラルネットワークは時系列予測に有効であることが示されている。
本稿では,グラフに基づく時間的予測におけるグローバル性と局所性の間の相互作用を理解することを目的とする。
このようなアーキテクチャにトレーニング可能なノード埋め込みを組み込むことを合理化するための方法論的枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-08T14:18:56Z) - AoI-based Temporal Attention Graph Neural Network for Popularity
Prediction and Content Caching [9.16219929722585]
情報中心ネットワーク(ICN)は、予測結果に基づいて、限られた人気コンテンツをネットワークの端に積極的に保持することを目的としている。
本稿では,2部グラフに埋め込まれた構造パターンと時間パターンを協調的に学習するために,有効な動的グラフニューラルネットワーク(DGNN)を利用する。
また,情報時代(AoI)に基づくアテンション機構を提案し,貴重な歴史的情報を抽出する。
論文 参考訳(メタデータ) (2022-08-18T02:57:17Z) - Provably Efficient Reinforcement Learning for Online Adaptive Influence
Maximization [53.11458949694947]
本稿では,リアルタイムフィードバックに基づいてシードノードを逐次活性化する,コンテンツ依存型オンライン影響問題の適応バージョンについて検討する。
提案アルゴリズムは,最適政策を楽観的に改善しつつ,ネットワークモデルの推定を保守し,適応的にシードを選択する。
論文 参考訳(メタデータ) (2022-06-29T18:17:28Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Contrastive Adaptive Propagation Graph Neural Networks for Efficient
Graph Learning [65.08818785032719]
グラフネットワーク(GNN)は、構造認識特徴の抽出と伝播によってグラフデータの処理に成功している。
近年,地域と高階の双方からなる拡張された隣人を直接扱えるように,近隣住民に焦点を絞った局所的伝播計画から拡張的伝播計画へと発展してきた。
優れた性能にもかかわらず、既存のアプローチは、局所的および高次隣人の影響を適応的に調整できる効率的で学習可能な拡張伝搬スキームを構築するのにはまだ不十分である。
論文 参考訳(メタデータ) (2021-12-02T10:35:33Z) - Predicting Critical Nodes in Temporal Networks by Dynamic Graph
Convolutional Networks [1.213512753726579]
ネットワーク構造が時間とともに変化するため、クリティカルノードを特定することは困難である。
本稿では,特殊なGCNとRNNを組み合わせた,新しい効果的な学習フレームワークを提案する。
4つの実世界の時間ネットワークに対する実験結果から,提案手法は従来のベンチマーク法とディープラーニングベンチマーク法の両方より優れていることが示された。
論文 参考訳(メタデータ) (2021-06-19T04:16:18Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。