論文の概要: CenterAtt: Fast 2-stage Center Attention Network
- arxiv url: http://arxiv.org/abs/2106.10493v1
- Date: Sat, 19 Jun 2021 13:03:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 15:34:11.550043
- Title: CenterAtt: Fast 2-stage Center Attention Network
- Title(参考訳): CenterAtt: 高速2ステージセンターアテンションネットワーク
- Authors: Jianyun Xu, Xin Tang, Jian Dou, Xu Shu, Yushi Zhu
- Abstract要約: 我々のチームは、Waymoオープンデータセットにおけるリアルタイム3D検出の課題において、すべての方法の6位にランク付けしています。
当社のソリューションは,Centerpoint 3D 検出フレームワーク上に構築されている。
- 参考スコア(独自算出の注目度): 4.438835621855619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this technical report, we introduce the methods of HIKVISION_LiDAR_Det in
the challenge of waymo open dataset real-time 3D detection. Our solution for
the competition are built upon Centerpoint 3D detection framework. Several
variants of CenterPoint are explored, including center attention head and
feature pyramid network neck. In order to achieve real time detection, methods
like batchnorm merge, half-precision floating point network and GPU-accelerated
voxelization process are adopted. By using these methods, our team ranks 6th
among all the methods on real-time 3D detection challenge in the waymo open
dataset.
- Abstract(参考訳): 本稿では,waymo open datasetリアルタイム3d検出の課題として,hikvision_lidar_detの手法を紹介する。
コンペのソリューションは、Centerpoint 3D検出フレームワーク上に構築されています。
センターポイントのいくつかの変種は、センターアテンションヘッドや特徴ピラミッドネットワークネックなど、探索されている。
リアルタイム検出を実現するため,バッチノームマージや半精度浮動小数点ネットワーク,GPU加速ボキセル化プロセスなどが採用されている。
これらの手法を用いることで、waymo open datasetのリアルタイム3d検出チャレンジでは、全メソッドの6位にランクインしました。
関連論文リスト
- V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
DETRフレームワークを用いた点雲のための高性能な3次元物体検出器を提案する。
限界に対処するため,新しい3次元相対位置(3DV-RPE)法を提案する。
挑戦的なScanNetV2ベンチマークで例外的な結果を示す。
論文 参考訳(メタデータ) (2023-08-08T17:14:14Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - CVFNet: Real-time 3D Object Detection by Learning Cross View Features [11.402076835949824]
CVFNetと呼ばれるリアルタイムビューベースの1段3Dオブジェクト検出器を提案する。
本稿ではまず,複数の段階において,ポイント・アンド・レンジ・ビュー機能を深く統合した新しいポイント・ラウンジ機能融合モジュールを提案する。
次に, 得られた深度視点特徴を鳥の目視に変換する際に, 3次元形状を良好に維持する特別のスライスピラーを設計する。
論文 参考訳(メタデータ) (2022-03-13T06:23:18Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
特徴アライメントと非対称非局所的注意を有するモノクロ3次元単段物体検出器(M3DSSD)を提案する。
提案したM3DSSDは,KITTIデータセット上のモノラルな3Dオブジェクト検出手法よりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2021-03-24T13:09:11Z) - Stereo CenterNet based 3D Object Detection for Autonomous Driving [2.508414661327797]
ステレオ画像の幾何学的情報を用いた3次元物体検出手法Stereo CenterNetを提案する。
Stereo CenterNetは、空間内のオブジェクトの3D境界ボックスの4つの意味キーポイントを予測し、3D空間におけるオブジェクトのバウンディングボックスを復元するために、2D左の右ボックス、3D次元、向き、キーポイントを使用する。
KITTIデータセットを用いた実験により, ステレオ幾何に基づく最先端手法と比較して, 高速かつ高精度なトレードオフを実現することができた。
論文 参考訳(メタデータ) (2021-03-20T02:18:49Z) - DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF
Relocalization [56.15308829924527]
生の3D点から直接3次元特徴の検出と記述を共同で学習するシームズネットワークを提案する。
3次元キーポイントを検出するために,局所的な記述子の識別性を教師なしで予測する。
各種ベンチマーク実験により,本手法はグローバルポイントクラウド検索とローカルポイントクラウド登録の両面で競合する結果が得られた。
論文 参考訳(メタデータ) (2020-07-17T20:21:22Z) - CenterNet3D: An Anchor Free Object Detector for Point Cloud [14.506796247331584]
本研究では,アンカーフリーのCenterNet3Dネットワークを提案し,アンカーなしで3次元物体検出を行う。
中心点に基づいて,アンカー不要な3次元物体検出を行うCenterNet3Dネットワークを提案する。
提案手法は,最先端のアンカーベースの一段法よりも優れ,二段法に匹敵する性能を有する。
論文 参考訳(メタデータ) (2020-07-13T13:53:56Z) - Center-based 3D Object Detection and Tracking [8.72305226979945]
3次元オブジェクトは通常、ポイントクラウド内の3Dボックスとして表現される。
この表現は、よく研究されたイメージベースの2Dバウンディングボックス検出を模倣するが、さらなる課題が伴う。
本稿では,3Dオブジェクトをポイントとして表現し,検出し,追跡する手法を提案する。
われわれのフレームワークであるCenterPointは、まずキーポイント検出器を用いて物体の中心を検知し、3次元サイズ、3次元方向、速度など他の属性に回帰する。
その結果、検出と追跡のアルゴリズムは単純で効率的で効果的である。
論文 参考訳(メタデータ) (2020-06-19T17:59:39Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
LIDARデータに対する高速な1段3次元物体検出法を提案する。
我々の手法の中核となる新規性は高速かつシングルパスアーキテクチャであり、どちらも3次元の物体を検出し、それらの形状を推定する。
提案手法は,ScanNetシーンのオブジェクト検出で5%,オープンデータセットでは3.4%の精度で結果が得られた。
論文 参考訳(メタデータ) (2020-04-02T17:48:50Z) - 3DSSD: Point-based 3D Single Stage Object Detector [61.67928229961813]
本稿では,3DSSDと命名された点ベース3次元単段物体検出器を提案し,精度と効率のバランスが良好であることを示す。
提案手法は,最先端のボクセルをベースとした一段法を大差で上回り,二段法に匹敵する性能を有する。
論文 参考訳(メタデータ) (2020-02-24T12:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。