論文の概要: Reversible Colour Density Compression of Images using cGANs
- arxiv url: http://arxiv.org/abs/2106.10542v1
- Date: Sat, 19 Jun 2021 17:44:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 07:21:39.450422
- Title: Reversible Colour Density Compression of Images using cGANs
- Title(参考訳): cGANを用いた画像の可逆色密度圧縮
- Authors: Arun Jose, Abraham Francis
- Abstract要約: 本研究では,条件付き生成対向ネットワークを用いて画像と損失関数をマッピングし,トレーニングを行うことを示す。
この手法は視覚的に無害な世代を生成するのに有効であることを示し、効率的な色圧縮が可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image compression using colour densities is historically impractical to
decompress losslessly. We examine the use of conditional generative adversarial
networks in making this transformation more feasible, through learning a
mapping between the images and a loss function to train on. We show that this
method is effective at producing visually lossless generations, indicating that
efficient colour compression is viable.
- Abstract(参考訳): 色密度を用いた画像圧縮は歴史的に損失をなくすには実用的ではない。
本研究では,画像と損失関数のマッピングを学習し,この変換をより実現可能にするための条件付き生成対向ネットワークの利用について検討する。
この手法は視覚的に無害な世代を生成するのに有効であることを示し、効率的な色圧縮が可能であることを示す。
関連論文リスト
- Convolutional Deep Colorization for Image Compression: A Color Grid Based Approach [0.0]
本研究は,画像カラー情報の完全自動保持に対するカラーグリッドに基づくアプローチの最適化に焦点をあてる。
私たちは、保存されている色情報の量を最小限に抑えつつ、忠実に画像を再カラー化できるようにしたいと思っています。
結果,画像圧縮比は有望であったが,画像再色化は高いCSIM値に到達した。
論文 参考訳(メタデータ) (2025-02-08T01:26:05Z) - Lossless Image Compression Using Multi-level Dictionaries: Binary Images [2.2940141855172036]
画像の保存や伝送コストを削減するために、さまざまなアプリケーションにおいてロスレス画像圧縮が必要である。
カラー画像の圧縮性は、本質的には空間構造におけるパターンから導かれるものであると論じる。
提案手法はまず,バイナリ画像のデータセットから16時間16ドル,8時間8ドル,4時間4ドル,2時間2平方ピクセルパターンの辞書を学習する。
論文 参考訳(メタデータ) (2024-06-05T09:24:10Z) - Multiple Latent Space Mapping for Compressed Dark Image Enhancement [51.112925890246444]
既存の暗黒画像強調手法は、圧縮された暗黒画像を入力とし、優れた性能を実現する。
可変オートエンコーダ(VAE)に基づく新しい潜時マッピングネットワークを提案する。
総合的な実験により,提案手法は圧縮暗画像強調における最先端性能を実現することを示した。
論文 参考訳(メタデータ) (2024-03-12T13:05:51Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Color Learning for Image Compression [1.2330326247154968]
本稿では,画像圧縮のタスクを2つのサブタスクに分割した新しいディープラーニングモデルアーキテクチャを提案する。
モデルは2つの別々の分岐を持ち、輝度と彩色成分を処理する。
このアプローチのメリットを実証し、パフォーマンスを他のコーデックと比較します。
論文 参考訳(メタデータ) (2023-06-30T08:16:48Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
JPEG画像のロスレス圧縮を学習するための新しいフレームワークを提案する。
周波数領域での学習を可能にするために、DCT係数は暗黙の局所冗長性を利用するためにグループに分割される。
グループ化されたDCT係数のエントロピーモデリングを実現するために、重み付きブロックに基づいてオートエンコーダのようなアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-03-05T13:15:28Z) - Learned Lossless Image Compression With Combined Autoregressive Models
And Attention Modules [22.213840578221678]
ロスレス画像圧縮は画像圧縮において重要な研究分野である。
近年の学習に基づく画像圧縮法は優れた性能を示した。
本稿では,ロスレス圧縮に広く用いられている手法について検討し,ロスレス圧縮に適用する。
論文 参考訳(メタデータ) (2022-08-30T03:27:05Z) - Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training [90.76576712433595]
ディープニューラルネットワークによって処理された画像に損失圧縮を適用することで、大幅な精度低下につながる可能性がある。
カリキュラム学習のパラダイムに着想を得て,圧縮画像の群集カウントのためのカリキュラム事前学習(CPT)と呼ばれる新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-15T08:43:21Z) - Enhanced Invertible Encoding for Learned Image Compression [40.21904131503064]
本稿では,改良されたインバーチブルを提案する。
非可逆ニューラルネットワーク(INN)によるネットワークは、情報損失問題を大幅に軽減し、圧縮性を向上する。
Kodak, CLIC, Tecnick のデータセットによる実験結果から,本手法は既存の学習画像圧縮法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-08-08T17:32:10Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
本稿では,$ell_infty$-constrained near-lossless image compressionを学習するための新しいフレームワークを提案する。
元の残差の学習確率モデルを定量化し、量子化残差の確率モデルを導出する。
論文 参考訳(メタデータ) (2021-03-31T11:53:36Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
我々は、ロスレス画像圧縮システムを構築するために、強力なロスレス画像圧縮アルゴリズムであるBPGを利用する。
我々は,BPG再構成を条件とした畳み込みニューラルネットワークに基づく確率モデルを用いて,残差分布をモデル化する。
そして、この画像は、BPGが生成したビットストリームと学習した残留コーダの連結を用いて保存される。
論文 参考訳(メタデータ) (2020-03-23T11:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。