論文の概要: Lossless Image Compression Using Multi-level Dictionaries: Binary Images
- arxiv url: http://arxiv.org/abs/2406.03087v3
- Date: Wed, 11 Sep 2024 14:34:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 20:48:06.541510
- Title: Lossless Image Compression Using Multi-level Dictionaries: Binary Images
- Title(参考訳): 多レベル辞書を用いたロスレス画像圧縮:バイナリ画像
- Authors: Samar Agnihotri, Renu Rameshan, Ritwik Ghosal,
- Abstract要約: 画像の保存や伝送コストを削減するために、さまざまなアプリケーションにおいてロスレス画像圧縮が必要である。
カラー画像の圧縮性は、本質的には空間構造におけるパターンから導かれるものであると論じる。
提案手法はまず,バイナリ画像のデータセットから16時間16ドル,8時間8ドル,4時間4ドル,2時間2平方ピクセルパターンの辞書を学習する。
- 参考スコア(独自算出の注目度): 2.2940141855172036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lossless image compression is required in various applications to reduce storage or transmission costs of images, while requiring the reconstructed images to have zero information loss compared to the original. Existing lossless image compression methods either have simple design but poor compression performance, or complex design, better performance, but with no performance guarantees. In our endeavor to develop a lossless image compression method with low complexity and guaranteed performance, we argue that compressibility of a color image is essentially derived from the patterns in its spatial structure, intensity variations, and color variations. Thus, we divide the overall design of a lossless image compression scheme into three parts that exploit corresponding redundancies. We further argue that the binarized version of an image captures its fundamental spatial structure. In this first part of our work, we propose a scheme for lossless compression of binary images. The proposed scheme first learns dictionaries of $16\times16$, $8\times8$, $4\times4$, and $2\times 2$ square pixel patterns from various datasets of binary images. It then uses these dictionaries to encode binary images. These dictionaries have various interesting properties that are further exploited to construct an efficient and scalable scheme. Our preliminary results show that the proposed scheme consistently outperforms existing conventional and learning based lossless compression approaches, and provides, on average, as much as $1.5\times$ better performance than a common general purpose lossless compression scheme (WebP), more than $3\times$ better performance than a state of the art learning based scheme, and better performance than a specialized scheme for binary image compression (JBIG2).
- Abstract(参考訳): 画像の保存や送信コストを削減するために、さまざまなアプリケーションにおいてロスレス画像圧縮が必要であるが、再構成された画像はオリジナルのものと比べて情報損失がゼロである必要がある。
既存のロスレス画像圧縮手法は単純な設計だが圧縮性能は劣るが、複雑な設計、性能は向上するが、性能保証はない。
低複雑性で性能が保証されたロスレス画像圧縮手法の開発にあたり、カラー画像の圧縮性はその空間構造、強度変化、色変化のパターンから本質的に派生したものであると論じる。
したがって、損失のない画像圧縮方式の全体設計を、対応する冗長性を利用する3つの部分に分割する。
さらに、画像の双対化バージョンは、その基本的な空間構造をキャプチャすると主張する。
本研究の前半では,2値画像のロスレス圧縮方式を提案する。
提案手法はまず、さまざまなバイナリ画像のデータセットから16ドル/8ドル/4ドル/2ドル/4ドル/2ドル/4ドル/4ドル/2ドル/4セント/4ドル/4ドル/4セント/4セント/4セント/5セント/5セント/5セント/5セント/5セント/5セント/5セントの辞書を学習する。
次に、これらの辞書を使ってバイナリ画像をエンコードする。
これらの辞書には、効率的でスケーラブルなスキームを構築するためにさらに活用される様々な興味深い性質がある。
予備的な結果から,提案手法は従来型および学習型ロスレス圧縮手法を一貫して上回り,一般目的ロスレス圧縮方式(WebP)よりも1.5ドル以上高い性能,最先端の学習ベース方式よりも3ドル以上高い性能,バイナリ画像圧縮方式(JBIG2)よりも優れた性能を提供する。
関連論文リスト
- Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need [53.584140947828004]
前例のないインテリジェンスを持つ言語大モデル(LLM)は、様々なデータモダリティのための汎用ロスレス圧縮機である。
P$2$-LLMは,様々な入念な洞察と方法論を統合した次世代の予測型LLMである。
ベンチマークデータセットの実験では、P$2$-LLMがSOTAの古典的および学習的コーデックに勝ることを示した。
論文 参考訳(メタデータ) (2024-11-19T12:15:40Z) - RAGE for the Machine: Image Compression with Low-Cost Random Access for
Embedded Applications [5.199703527082964]
RAGEは画像圧縮フレームワークで、一般的に矛盾する4つの目的を達成する。
RAGEは、最先端のロスレス画像圧縮機と類似またはより良い圧縮比を有することを示す。
また、RAGE-Qは、組込みグラフィックスの歪みという点でJPEGを数倍上回っていることを示す。
論文 参考訳(メタデータ) (2024-02-07T19:28:33Z) - CompaCT: Fractal-Based Heuristic Pixel Segmentation for Lossless Compression of High-Color DICOM Medical Images [0.0]
医用画像は、医師による正確な分析のために、ピクセル単位の12ビットの高色深度を必要とする。
フィルタリングによる画像の標準圧縮はよく知られているが、具体化されていない実装のため、医療領域ではまだ最適ではない。
本研究では,動的に拡張されたデータ処理のための画素濃度の空間的特徴とパターンをターゲットとした医用画像圧縮アルゴリズムCompaCTを提案する。
論文 参考訳(メタデータ) (2023-08-24T21:43:04Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
本稿では、損失のない画像圧縮とほぼロスレス画像圧縮の両面において、統合された強力な深い損失+残差(DLPR)符号化フレームワークを提案する。
VAEのアプローチにおける連立損失と残留圧縮の問題を解く。
ほぼロスレスモードでは、元の残差を量子化し、与えられた$ell_infty$エラー境界を満たす。
論文 参考訳(メタデータ) (2022-09-11T12:11:56Z) - Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training [90.76576712433595]
ディープニューラルネットワークによって処理された画像に損失圧縮を適用することで、大幅な精度低下につながる可能性がある。
カリキュラム学習のパラダイムに着想を得て,圧縮画像の群集カウントのためのカリキュラム事前学習(CPT)と呼ばれる新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-15T08:43:21Z) - ELIC: Efficient Learned Image Compression with Unevenly Grouped
Space-Channel Contextual Adaptive Coding [9.908820641439368]
本研究では,最先端の速度と圧縮能力を実現するための効率的なモデルであるELICを提案する。
優れたパフォーマンスで、提案モデルは極めて高速なプレビューデコーディングとプログレッシブデコーディングもサポートする。
論文 参考訳(メタデータ) (2022-03-21T11:19:50Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
本稿では,$ell_infty$-constrained near-lossless image compressionを学習するための新しいフレームワークを提案する。
元の残差の学習確率モデルを定量化し、量子化残差の確率モデルを導出する。
論文 参考訳(メタデータ) (2021-03-31T11:53:36Z) - How to Exploit the Transferability of Learned Image Compression to
Conventional Codecs [25.622863999901874]
本稿では,学習した画像の符号化をサロゲートとして利用して,画像の符号化を最適化する方法を示す。
提案手法は,MS-SSIM歪みをデコードオーバーヘッドを伴わずに20%以上の速度改善で補正するために,従来の画像を再構成することができる。
論文 参考訳(メタデータ) (2020-12-03T12:34:51Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
我々は、ロスレス画像圧縮システムを構築するために、強力なロスレス画像圧縮アルゴリズムであるBPGを利用する。
我々は,BPG再構成を条件とした畳み込みニューラルネットワークに基づく確率モデルを用いて,残差分布をモデル化する。
そして、この画像は、BPGが生成したビットストリームと学習した残留コーダの連結を用いて保存される。
論文 参考訳(メタデータ) (2020-03-23T11:21:52Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。