Do Encoder Representations of Generative Dialogue Models Encode
Sufficient Information about the Task ?
- URL: http://arxiv.org/abs/2106.10622v1
- Date: Sun, 20 Jun 2021 04:52:37 GMT
- Title: Do Encoder Representations of Generative Dialogue Models Encode
Sufficient Information about the Task ?
- Authors: Prasanna Parthasarathi, Joelle Pineau, Sarath Chandar
- Abstract summary: We showcase evaluating the text generated through human or automatic metrics is not sufficient to appropriately evaluate soundness of the language understanding of dialogue models.
We propose a set of probe tasks to evaluate encoder representation of different language encoders commonly used in dialogue models.
- Score: 41.36218215755317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the next utterance in dialogue is contingent on encoding of users'
input text to generate appropriate and relevant response in data-driven
approaches. Although the semantic and syntactic quality of the language
generated is evaluated, more often than not, the encoded representation of
input is not evaluated. As the representation of the encoder is essential for
predicting the appropriate response, evaluation of encoder representation is a
challenging yet important problem. In this work, we showcase evaluating the
text generated through human or automatic metrics is not sufficient to
appropriately evaluate soundness of the language understanding of dialogue
models and, to that end, propose a set of probe tasks to evaluate encoder
representation of different language encoders commonly used in dialogue models.
From experiments, we observe that some of the probe tasks are easier and some
are harder for even sophisticated model architectures to learn. And, through
experiments we observe that RNN based architectures have lower performance on
automatic metrics on text generation than transformer model but perform better
than the transformer model on the probe tasks indicating that RNNs might
preserve task information better than the Transformers.
Related papers
- Sparse Autoencoders Enable Scalable and Reliable Circuit Identification in Language Models [0.0]
This paper introduces an efficient and robust method for discovering interpretable circuits in large language models.
We propose training sparse autoencoders on carefully designed positive and negative examples.
Our findings highlight the promise of discrete sparse autoencoders for scalable and efficient mechanistic interpretability.
arXiv Detail & Related papers (2024-05-21T06:26:10Z) - Exploring Automatic Evaluation Methods based on a Decoder-based LLM for
Text Generation [16.78350863261211]
This paper compares various methods, including tuning with encoder-based models and large language models under equal conditions.
Experimental results show that compared to the tuned encoder-based models, the tuned decoder-based models perform poorly.
It is also revealed that in-context learning of very large decoder-based models such as ChatGPT makes it difficult to identify fine-grained semantic differences.
arXiv Detail & Related papers (2023-10-17T06:53:00Z) - RECAP: Retrieval-Enhanced Context-Aware Prefix Encoder for Personalized
Dialogue Response Generation [30.245143345565758]
We propose a new retrieval-enhanced approach for personalized response generation.
We design a hierarchical transformer retriever trained on dialogue domain data to perform personalized retrieval and a context-aware prefix encoder that fuses the retrieved information to the decoder more effectively.
We quantitatively evaluate our model's performance under a suite of human and automatic metrics and find it to be superior compared to state-of-the-art baselines on English Reddit conversations.
arXiv Detail & Related papers (2023-06-12T16:10:21Z) - Tram: A Token-level Retrieval-augmented Mechanism for Source Code Summarization [76.57699934689468]
We propose a fine-grained Token-level retrieval-augmented mechanism (Tram) on the decoder side to enhance the performance of neural models.
To overcome the challenge of token-level retrieval in capturing contextual code semantics, we also propose integrating code semantics into individual summary tokens.
arXiv Detail & Related papers (2023-05-18T16:02:04Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
We build a sentence-level autoencoder from a pretrained, frozen transformer language model.
We adapt the masked language modeling objective as a generative, denoising one, while only training a sentence bottleneck and a single-layer modified transformer decoder.
We demonstrate that the sentence representations discovered by our model achieve better quality than previous methods that extract representations from pretrained transformers on text similarity tasks, style transfer, and single-sentence classification tasks in the GLUE benchmark, while using fewer parameters than large pretrained models.
arXiv Detail & Related papers (2021-08-31T19:39:55Z) - How To Evaluate Your Dialogue System: Probe Tasks as an Alternative for
Token-level Evaluation Metrics [47.20761880464552]
generative dialogue modeling is widely seen as a language modeling task.
The task demands an agent to have a complex natural language understanding of its input text to carry a meaningful interaction with an user.
The automatic metrics used evaluate the quality of the generated text as a proxy to the holistic interaction of the agent.
arXiv Detail & Related papers (2020-08-24T13:28:35Z) - Contextualized Spoken Word Representations from Convolutional
Autoencoders [2.28438857884398]
This paper proposes a Convolutional Autoencoder based neural architecture to model syntactically and semantically adequate contextualized representations of varying length spoken words.
The proposed model was able to demonstrate its robustness when compared to the other two language-based models.
arXiv Detail & Related papers (2020-07-06T16:48:11Z) - Learning an Unreferenced Metric for Online Dialogue Evaluation [53.38078951628143]
We propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances.
We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
arXiv Detail & Related papers (2020-05-01T20:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.