Exploring Automatic Evaluation Methods based on a Decoder-based LLM for
Text Generation
- URL: http://arxiv.org/abs/2310.11026v1
- Date: Tue, 17 Oct 2023 06:53:00 GMT
- Title: Exploring Automatic Evaluation Methods based on a Decoder-based LLM for
Text Generation
- Authors: Tomohito Kasahara, Daisuke Kawahara
- Abstract summary: This paper compares various methods, including tuning with encoder-based models and large language models under equal conditions.
Experimental results show that compared to the tuned encoder-based models, the tuned decoder-based models perform poorly.
It is also revealed that in-context learning of very large decoder-based models such as ChatGPT makes it difficult to identify fine-grained semantic differences.
- Score: 16.78350863261211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic evaluation of text generation is essential for improving the
accuracy of generation tasks. In light of the current trend towards
increasingly larger decoder-based language models, we investigate automatic
evaluation methods based on such models for text generation. This paper
compares various methods, including tuning with encoder-based models and large
language models under equal conditions, on two different tasks, machine
translation evaluation and semantic textual similarity, in two languages,
Japanese and English. Experimental results show that compared to the tuned
encoder-based models, the tuned decoder-based models perform poorly. The
analysis of the causes for this suggests that the decoder-based models focus on
surface word sequences and do not capture meaning. It is also revealed that
in-context learning of very large decoder-based models such as ChatGPT makes it
difficult to identify fine-grained semantic differences.
Related papers
- A Case Study on Context-Aware Neural Machine Translation with Multi-Task Learning [49.62044186504516]
In document-level neural machine translation (DocNMT), multi-encoder approaches are common in encoding context and source sentences.
Recent studies have shown that the context encoder generates noise and makes the model robust to the choice of context.
This paper further investigates this observation by explicitly modelling context encoding through multi-task learning (MTL) to make the model sensitive to the choice of context.
arXiv Detail & Related papers (2024-07-03T12:50:49Z) - Adapting Dual-encoder Vision-language Models for Paraphrased Retrieval [55.90407811819347]
We consider the task of paraphrased text-to-image retrieval where a model aims to return similar results given a pair of paraphrased queries.
We train a dual-encoder model starting from a language model pretrained on a large text corpus.
Compared to public dual-encoder models such as CLIP and OpenCLIP, the model trained with our best adaptation strategy achieves a significantly higher ranking similarity for paraphrased queries.
arXiv Detail & Related papers (2024-05-06T06:30:17Z) - Extrapolating Multilingual Understanding Models as Multilingual
Generators [82.1355802012414]
This paper explores methods to empower multilingual understanding models the generation abilities to get a unified model.
We propose a textbfSemantic-textbfGuided textbfAlignment-then-Denoising (SGA) approach to adapt an encoder to a multilingual generator with a small number of new parameters.
arXiv Detail & Related papers (2023-05-22T15:33:21Z) - Stochastic Code Generation [1.7205106391379026]
Large language models pre-trained for code generation can generate high-quality short code but often struggle with generating coherent long code.
This issue is also observed in language modeling for long text generation.
In this study, we investigate whether this technique can be applied to code generation to improve coherence.
arXiv Detail & Related papers (2023-04-14T00:01:05Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
We build a sentence-level autoencoder from a pretrained, frozen transformer language model.
We adapt the masked language modeling objective as a generative, denoising one, while only training a sentence bottleneck and a single-layer modified transformer decoder.
We demonstrate that the sentence representations discovered by our model achieve better quality than previous methods that extract representations from pretrained transformers on text similarity tasks, style transfer, and single-sentence classification tasks in the GLUE benchmark, while using fewer parameters than large pretrained models.
arXiv Detail & Related papers (2021-08-31T19:39:55Z) - Do Encoder Representations of Generative Dialogue Models Encode
Sufficient Information about the Task ? [41.36218215755317]
We showcase evaluating the text generated through human or automatic metrics is not sufficient to appropriately evaluate soundness of the language understanding of dialogue models.
We propose a set of probe tasks to evaluate encoder representation of different language encoders commonly used in dialogue models.
arXiv Detail & Related papers (2021-06-20T04:52:37Z) - Code to Comment Translation: A Comparative Study on Model Effectiveness
& Errors [19.653423881863834]
Machine translation models are employed to "translate" code snippets into relevant natural language descriptions.
Most evaluations of such models are conducted using automatic reference-based metrics.
We compare three recently proposed source code summarization models based on the smoothed BLEU-4, METEOR, and ROUGE-L machine translation metrics.
Our investigation reveals new insights into the relationship between metric-based performance and model prediction errors grounded in an empirically derived error taxonomy.
arXiv Detail & Related papers (2021-06-15T20:13:14Z) - Non-Autoregressive Translation by Learning Target Categorical Codes [59.840510037250944]
We propose CNAT, which learns implicitly categorical codes as latent variables into the non-autoregressive decoding.
Experiment results show that our model achieves comparable or better performance in machine translation tasks.
arXiv Detail & Related papers (2021-03-21T14:12:34Z) - Contextualized Spoken Word Representations from Convolutional
Autoencoders [2.28438857884398]
This paper proposes a Convolutional Autoencoder based neural architecture to model syntactically and semantically adequate contextualized representations of varying length spoken words.
The proposed model was able to demonstrate its robustness when compared to the other two language-based models.
arXiv Detail & Related papers (2020-07-06T16:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.