Geometric measure of entanglement of multi-qubit graph states and its
detection on a quantum computer
- URL: http://arxiv.org/abs/2106.10688v1
- Date: Sun, 20 Jun 2021 12:47:09 GMT
- Title: Geometric measure of entanglement of multi-qubit graph states and its
detection on a quantum computer
- Authors: Kh. P. Gnatenko, N. A. Susulovska
- Abstract summary: The entanglement of a qubit with other qubits is found for the graph states represented by arbitrary graphs.
The geometric measure of entanglement of the graph states is quantified on the quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-qubit graph states generated by the action of controlled phase shift
operators on a separable quantum state of a system, in which all the qubits are
in arbitrary identical states, are examined. The geometric measure of
entanglement of a qubit with other qubits is found for the graph states
represented by arbitrary graphs. The entanglement depends on the degree of the
vertex representing the qubit, the absolute values of the parameter of the
phase shift gate, and the parameter of state the gate is acting on. Also, the
geometric measure of entanglement of the graph states is quantified on the
quantum computer $\textrm{ibmq\_athens}$. The results obtained on the quantum
device are in good agreement with analytical ones.
Related papers
- Many-body quantum resources of graph states [0.0]
Characterizing the non-classical correlations of a complex many-body system is an important part of quantum technologies.
We consider four topologies, namely the star graph states with edges, Tur'an graphs, $r$-ary tree graphs, and square grid cluster states.
We characterize many-body entanglement depth in graph states with up to $8$ qubits in $146$ classes non-equivalent under local transformations and graph isomorphisms.
arXiv Detail & Related papers (2024-10-16T12:05:19Z) - Entanglement of multi-qubit states representing directed networks and its detection with quantum computing [0.0]
We consider quantum graph states that can be mapped to directed weighted graphs, also known as directed networks.
The geometric measure of entanglement of the states is calculated for the quantum graph states corresponding to arbitrary graphs.
arXiv Detail & Related papers (2024-07-13T19:36:11Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Geometric measure of entanglement of quantum graph states prepared with
controlled phase shift operators [0.0]
We consider graph states generated by the action of controlled phase shift operators on a separable state of a multi-qubit system.
For two-qubit graph states, the geometric measure of entanglement is also quantified on IBM's simulator Qiskit Aer and quantum processor ibmq lima.
arXiv Detail & Related papers (2024-01-26T16:52:22Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Evaluation of variational quantum states entanglement on a quantum
computer by the mean value of spin [0.0]
We study n-qubit quantum states prepared by a variational circuit with a layer formed by the rotational gates and two-qubit controlled phase gates.
The entanglement of a qubit with other qubits in the variational quantum states is determined by the angles of rotational gates.
The dependence of the geometric measure of entanglement of variational quantum states on their parameters is quantified on IBM's quantum computer.
arXiv Detail & Related papers (2023-01-10T10:18:54Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Geometric properties of evolutionary graph states and their detection on
a quantum computer [0.0]
Geometric characteristics of graph states corresponding to a chain, a triangle, and a square are detected on the basis of calculations on IBM's quantum computer ibmq-manila.
arXiv Detail & Related papers (2021-08-29T20:31:37Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.