Entanglement of multi-qubit states representing directed networks and its detection with quantum computing
- URL: http://arxiv.org/abs/2407.09990v1
- Date: Sat, 13 Jul 2024 19:36:11 GMT
- Title: Entanglement of multi-qubit states representing directed networks and its detection with quantum computing
- Authors: Kh. P. Gnatenko,
- Abstract summary: We consider quantum graph states that can be mapped to directed weighted graphs, also known as directed networks.
The geometric measure of entanglement of the states is calculated for the quantum graph states corresponding to arbitrary graphs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider quantum graph states that can be mapped to directed weighted graphs, also known as directed networks. The geometric measure of entanglement of the states is calculated for the quantum graph states corresponding to arbitrary graphs. We find relationships between the entanglement and the properties of the corresponding graphs. Namely, we obtain that the geometric measure of entanglement of a qubit with other qubits in the graph state is related to the weights of ingoing and outgoing arcs with respect to the vertex representing the qubit, outdegree and indegree of the corresponding vertex in the graph. For unweighted and undirected graphs, the entanglement depends on the degree of the corresponding vertex. Quantum protocol for quantifying of the entanglement of the quantum graph states is constructed. As an example, a quantum graph state corresponding to a chain is examined, and the entanglement of the state is calculated on AerSimulator.
Related papers
- Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Geometric measure of entanglement of quantum graph states prepared with
controlled phase shift operators [0.0]
We consider graph states generated by the action of controlled phase shift operators on a separable state of a multi-qubit system.
For two-qubit graph states, the geometric measure of entanglement is also quantified on IBM's simulator Qiskit Aer and quantum processor ibmq lima.
arXiv Detail & Related papers (2024-01-26T16:52:22Z) - Evaluation of variational quantum states entanglement on a quantum
computer by the mean value of spin [0.0]
We study n-qubit quantum states prepared by a variational circuit with a layer formed by the rotational gates and two-qubit controlled phase gates.
The entanglement of a qubit with other qubits in the variational quantum states is determined by the angles of rotational gates.
The dependence of the geometric measure of entanglement of variational quantum states on their parameters is quantified on IBM's quantum computer.
arXiv Detail & Related papers (2023-01-10T10:18:54Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Geometric properties of evolutionary graph states and their detection on
a quantum computer [0.0]
Geometric characteristics of graph states corresponding to a chain, a triangle, and a square are detected on the basis of calculations on IBM's quantum computer ibmq-manila.
arXiv Detail & Related papers (2021-08-29T20:31:37Z) - Geometric measure of entanglement of multi-qubit graph states and its
detection on a quantum computer [0.0]
The entanglement of a qubit with other qubits is found for the graph states represented by arbitrary graphs.
The geometric measure of entanglement of the graph states is quantified on the quantum computer.
arXiv Detail & Related papers (2021-06-20T12:47:09Z) - Entanglement of graph states of spin system with Ising interaction and
its quantifying on IBM's quantum computer [0.0]
We consider graph states generated by operator of evolution with Ising Hamiltonian.
The geometric measure of entanglement of a spin with other spins in the graph state is obtained analytically and quantified on IBM's quantum computer, IBM Q Valencia.
arXiv Detail & Related papers (2020-12-10T21:22:53Z) - Spectra of Perfect State Transfer Hamiltonians on Fractal-Like Graphs [62.997667081978825]
We study the spectral features, on fractal-like graphs, of Hamiltonians which exhibit the special property of perfect quantum state transfer.
The essential goal is to develop the theoretical framework for understanding the interplay between perfect quantum state transfer, spectral properties, and the geometry of the underlying graph.
arXiv Detail & Related papers (2020-03-25T02:46:14Z) - Asymptotic entropy of the Gibbs state of complex networks [68.8204255655161]
The Gibbs state is obtained from the Laplacian, normalized Laplacian or adjacency matrices associated with a graph.
We calculated the entropy of the Gibbs state for a few classes of graphs and studied their behavior with changing graph order and temperature.
Our results show that the behavior of Gibbs entropy as a function of the temperature differs for a choice of real networks when compared to the random ErdHos-R'enyi graphs.
arXiv Detail & Related papers (2020-03-18T18:01:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.