論文の概要: Opportunities and challenges in partitioning the graph measure space of
real-world networks
- arxiv url: http://arxiv.org/abs/2106.10753v1
- Date: Sun, 20 Jun 2021 21:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 07:16:38.376111
- Title: Opportunities and challenges in partitioning the graph measure space of
real-world networks
- Title(参考訳): 実世界のネットワークにおけるグラフ測度空間分割の機会と課題
- Authors: M\'at\'e J\'ozsa, Alp\'ar S. L\'az\'ar and Zsolt I. L\'az\'ar
- Abstract要約: 遺伝、タンパク質の相互作用、代謝ネットワークから脳、言語、生態、ソーシャルネットワークまで、何千もの現実世界のネットワークを含む大規模なデータセットに基づいて、我々は異なる複雑なネットワークドメイン(CND)の構造的尺度を探索する。
我々は,全ネットワークに対する208の尺度を算出し,統計および機械学習手法の包括的かつ精巧なワークフローを用いて,CNDの重要グラフ尺度を特定する限界と可能性を検討した。
提案手法は,ネットワークドメインの識別と,それらの特徴の参照に成功している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on a large dataset containing thousands of real-world networks ranging
from genetic, protein interaction, and metabolic networks to brain, language,
ecology, and social networks we search for defining structural measures of the
different complex network domains (CND). We calculate 208 measures for all
networks and using a comprehensive and scrupulous workflow of statistical and
machine learning methods we investigated the limitations and possibilities of
identifying the key graph measures of CNDs. Our approach managed to identify
well distinguishable groups of network domains and confer their relevant
features. These features turn out to be CND specific and not unique even at the
level of individual CNDs. The presented methodology may be applied to other
similar scenarios involving highly unbalanced and skewed datasets.
- Abstract(参考訳): 遺伝的、タンパク質相互作用、代謝ネットワークから脳、言語、生態、およびソーシャルネットワークまで、何千もの現実世界のネットワークを含む巨大なデータセットに基づいて、異なる複雑なネットワークドメイン(cnd)の構造的尺度を定義する。
全ネットワークの208指標を計算し,統計および機械学習の包括的かつ精巧なワークフローを用いて,cndsのキーグラフ尺度の同定の限界と可能性について検討した。
提案手法により,ネットワークドメインの識別と,それらの特徴の参照が可能となった。
これらの特徴はCND特有のものであり、個々のCNDのレベルでもユニークではないことが判明した。
提示された方法論は、高度に不均衡で歪んだデータセットを含む他の類似のシナリオにも適用できる。
関連論文リスト
- Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
我々は、属性付きネットワークにおけるコミュニティ検出のための、教師なしのtextbfGraph Attention textbfAutotextbfEncoder に基づく、シンプルで効率的なクラスタリング指向モデルを提案する。
提案モデルは,ネットワークのトポロジと属性情報の両方から表現を十分に学習し,同時に2つの目的,すなわち再構築とコミュニティ発見に対処する。
論文 参考訳(メタデータ) (2023-11-21T20:45:55Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - Learning to Detect Critical Nodes in Sparse Graphs via Feature Importance Awareness [53.351863569314794]
クリティカルノード問題(CNP)は、削除が残余ネットワークのペア接続性を最大に低下させるネットワークから臨界ノードの集合を見つけることを目的としている。
本研究は,ノード表現のための特徴重要度対応グラフアテンションネットワークを提案する。
ダブルディープQネットワークと組み合わせて、初めてCNPを解くエンドツーエンドのアルゴリズムを作成する。
論文 参考訳(メタデータ) (2021-12-03T14:23:05Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Topological Uncertainty: Monitoring trained neural networks through
persistence of activation graphs [0.9786690381850356]
産業アプリケーションでは、オープンワールド設定から得られるデータは、ネットワークがトレーニングされたベンチマークデータセットと大きく異なる可能性がある。
活性化グラフのトポロジ的特性に基づいて訓練されたニューラルネットワークを監視する手法を開発している。
論文 参考訳(メタデータ) (2021-05-07T14:16:03Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - GAHNE: Graph-Aggregated Heterogeneous Network Embedding [32.44836376873812]
異種ネットワーク埋め込みは、ノードを低次元ベクトルに埋め込み、異種ネットワークの豊富な本質的な情報を捕捉することを目的としている。
既存のモデルは、手動でメタパスを設計するか、異なるセマンティクス間の相互効果を無視するか、あるいはグローバルネットワークからの情報のいくつかの側面を省略する。
GAHNEモデルでは、異なる単一タイプのサブネットワークからのセマンティック表現を集約する機構を開発し、グローバル情報を最終埋め込みに融合させる。
論文 参考訳(メタデータ) (2020-12-23T07:11:30Z) - Joint Inference of Diffusion and Structure in Partially Observed Social
Networks Using Coupled Matrix Factorization [3.399624105745357]
本稿では、部分的に観測されたデータからモデルを学び、観測されていない拡散と構造ネットワークを推定する。
提案手法では,ノードとカスケードプロセスの相互関係を,学習因子と低次元潜在因子を用いて利用した。
これらの合成および実世界のデータセットの実験により、提案手法は見えない社会行動を検出し、リンクを予測し、潜伏した特徴を識別することに成功した。
論文 参考訳(メタデータ) (2020-10-03T17:48:57Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。