論文の概要: DisenHAN: Disentangled Heterogeneous Graph Attention Network for
Recommendation
- arxiv url: http://arxiv.org/abs/2106.10879v1
- Date: Mon, 21 Jun 2021 06:26:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 15:06:17.250435
- Title: DisenHAN: Disentangled Heterogeneous Graph Attention Network for
Recommendation
- Title(参考訳): DisenHAN: Recommendationのための不均一グラフ注意ネットワーク
- Authors: Yifan Wang, Suyao Tang, Yuntong Lei, Weiping Song, Sheng Wang, Ming
Zhang
- Abstract要約: 不均一な情報ネットワークは、リコメンデータシステムにおけるスパーシリティとコールドスタートの問題を軽減するために広く利用されている。
そこで本稿では,非交叉不均質グラフアテンションネットワークDisenHANについて,トップ$N$のレコメンデーションを提案する。
- 参考スコア(独自算出の注目度): 11.120241862037911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous information network has been widely used to alleviate sparsity
and cold start problems in recommender systems since it can model rich context
information in user-item interactions. Graph neural network is able to encode
this rich context information through propagation on the graph. However,
existing heterogeneous graph neural networks neglect entanglement of the latent
factors stemming from different aspects. Moreover, meta paths in existing
approaches are simplified as connecting paths or side information between node
pairs, overlooking the rich semantic information in the paths. In this paper,
we propose a novel disentangled heterogeneous graph attention network DisenHAN
for top-$N$ recommendation, which learns disentangled user/item representations
from different aspects in a heterogeneous information network. In particular,
we use meta relations to decompose high-order connectivity between node pairs
and propose a disentangled embedding propagation layer which can iteratively
identify the major aspect of meta relations. Our model aggregates corresponding
aspect features from each meta relation for the target user/item. With
different layers of embedding propagation, DisenHAN is able to explicitly
capture the collaborative filtering effect semantically. Extensive experiments
on three real-world datasets show that DisenHAN consistently outperforms
state-of-the-art approaches. We further demonstrate the effectiveness and
interpretability of the learned disentangled representations via insightful
case studies and visualization.
- Abstract(参考訳): 不均一な情報ネットワークは、ユーザとイテムのインタラクションにおいてリッチなコンテキスト情報をモデル化できるため、レコメンデータシステムにおいて、スパーシリティやコールドスタートの問題を軽減するために広く利用されている。
グラフニューラルネットワークは、グラフ上の伝播を通じて、このリッチなコンテキスト情報をエンコードすることができる。
しかし、既存の異種グラフニューラルネットワークは、異なる側面から生じる潜在因子の絡み合いを無視している。
さらに、既存のアプローチのメタパスは、パス内のリッチなセマンティック情報を見渡すために、ノードペア間のパスまたはサイド情報を接続するように単純化されている。
本稿では,ヘテロジニアス情報ネットワークにおいて,異なる局面から異質なユーザ/項目表現を学習するtop-n$レコメンデーションのための,新たな異種グラフアテンションネットワークdisenhanを提案する。
特に,メタリレーションを用いてノード間の高次接続を分解し,メタリレーションの主要な側面を反復的に識別できるアンタングル埋め込み伝搬層を提案する。
本モデルでは,対象ユーザ/項目の各メタ関係から対応するアスペクト特徴を集約する。
埋め込み伝搬の異なるレイヤにより、DisenHANは協調フィルタリング効果を意味的に捉えることができる。
3つの実世界のデータセットに関する広範な実験は、disenhanが最先端のアプローチを一貫して上回っていることを示している。
さらに,洞察に富んだケーススタディと可視化により,学習した不連続表現の有効性と解釈可能性を示す。
関連論文リスト
- Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network [4.078409998614025]
論理的に異なるラベルを持つノードは意味論的意味に基づいて接続される傾向があるが、グラフニューラルネットワーク(GNN)は、しばしば最適以下の性能を示す。
ヘテロフィリーに固有の意味情報をグラフ学習において効果的に活用できることを示す。
ノード分布を利用して異種情報を統合する新しいグラフ構造を構築する革新的な手法であるHiGNNを提案する。
論文 参考訳(メタデータ) (2024-03-26T03:29:42Z) - Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
本稿では,グラフ上の拡散フィルタを統合する新しい多視点コントラスト学習手法を提案する。
複数のグラフビューを拡張として組み込むことで、異種グラフの構造的等価性を捉える。
論文 参考訳(メタデータ) (2023-08-19T17:42:02Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model [23.525079144108567]
コンテキストパスに基づくグラフニューラルネットワーク(CP-GNN)モデルを構築した。
ノード間の高次関係をノードの埋め込みに埋め込む。
最先端のコミュニティ検出手法よりも優れています。
論文 参考訳(メタデータ) (2021-09-05T12:28:00Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Layer-stacked Attention for Heterogeneous Network Embedding [0.0]
レイヤスタックATTention Embedding (LATTE)は、各レイヤで上位のメタ関係を自動的に分解するアーキテクチャである。
LATTEは、異なる近傍範囲の異なるタイプのノードに対して、より解釈可能なアグリゲーションスキームを提供する。
帰納的ノード分類タスクと帰納的ノード分類タスクの両方において、LATTEは既存のアプローチと比較して最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2020-09-17T05:13:41Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
不均一情報ネットワーク(HIN)埋め込みは、HINの構造と意味情報を分散表現にマッピングすることを目的としている。
本稿では,注意とメタパスを暗黙的に活用するニューラルネットワーク手法を提案する。
まず、各層で識別集約を行う多層グラフ畳み込みネットワーク(GCN)フレームワークを用いる。
次に,アグリゲーションから分離可能な新しい伝搬操作を導入することにより,効果的な緩和と改善を行う。
論文 参考訳(メタデータ) (2020-07-06T11:09:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。