論文の概要: Software-Based Dialogue Systems: Survey, Taxonomy and Challenges
- arxiv url: http://arxiv.org/abs/2106.10901v2
- Date: Tue, 6 Feb 2024 10:22:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 21:38:25.702564
- Title: Software-Based Dialogue Systems: Survey, Taxonomy and Challenges
- Title(参考訳): ソフトウェアに基づく対話システム:調査,分類,課題
- Authors: Quim Motger, Xavier Franch and Jordi Marco
- Abstract要約: 本稿では,2次研究の体系的な文献レビューを通じて,会話エージェントの研究の現状について調査する。
そこで本研究では,対話エージェントの分野における異なる次元の包括的分類法を提案する。
- 参考スコア(独自算出の注目度): 4.2763155274587366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of natural language interfaces in the field of human-computer
interaction is undergoing intense study through dedicated scientific and
industrial research. The latest contributions in the field, including deep
learning approaches like recurrent neural networks, the potential of
context-aware strategies and user-centred design approaches, have brought back
the attention of the community to software-based dialogue systems, generally
known as conversational agents or chatbots. Nonetheless, and given the novelty
of the field, a generic, context-independent overview on the current state of
research of conversational agents covering all research perspectives involved
is missing. Motivated by this context, this paper reports a survey of the
current state of research of conversational agents through a systematic
literature review of secondary studies. The conducted research is designed to
develop an exhaustive perspective through a clear presentation of the
aggregated knowledge published by recent literature within a variety of
domains, research focuses and contexts. As a result, this research proposes a
holistic taxonomy of the different dimensions involved in the conversational
agents' field, which is expected to help researchers and to lay the groundwork
for future research in the field of natural language interfaces.
- Abstract(参考訳): 人-コンピュータ相互作用の分野における自然言語インタフェースの利用は、専門の科学・産業研究を通じて激しい研究が進められている。
この分野での最新のコントリビューションは、リカレントニューラルネットワークやコンテキスト認識戦略の可能性、ユーザ中心の設計アプローチといったディープラーニングアプローチを含む、コミュニティの関心を、会話エージェントやチャットボットとして知られるソフトウェアベースの対話システムへと引き戻すものだ。
それにもかかわらず、この分野の新規性を考えると、関連するすべての研究の観点をカバーする会話エージェントの研究の現状に関する、一般的な文脈に依存しない概要が欠落している。
本稿では,この文脈に動機づけられ,二次研究の体系的文献レビューを通して,対話型エージェント研究の現状について概説する。
本研究は,最近の文献から得られた知識を,様々な領域,研究の焦点,文脈において明確に提示することで,徹底的な視点を育むように設計されている。
そこで本研究では,対話エージェントの分野における異なる次元の包括的分類法を提案し,研究者を支援するとともに,自然言語インタフェースの分野における今後の研究の基盤となることを期待する。
関連論文リスト
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - A Review of the Applications of Deep Learning-Based Emergent Communication [1.6574413179773761]
創発的コミュニケーション(英: Emergent Communication)または創発的言語(英: emergent language)は、人間の言語に似たコミュニケーションシステムが深層強化学習環境においてどのように出現するかを研究する研究分野である。
本稿では,機械学習,自然言語処理,言語学,認知科学における創発的コミュニケーション研究の応用を包括的にレビューする。
論文 参考訳(メタデータ) (2024-07-03T17:43:54Z) - A Survey on Recent Advances in Conversational Data Generation [14.237954885530396]
マルチターン対話型データ生成の体系的・包括的レビューを行う。
オープンドメイン,タスク指向,情報検索の3種類の対話システムに注目した。
合成会話データを評価するための評価指標と手法について検討する。
論文 参考訳(メタデータ) (2024-05-12T10:11:12Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - Exploring the Landscape of Natural Language Processing Research [3.3916160303055567]
NLP関連のいくつかのアプローチが研究コミュニティで調査されている。
確立したトピックを分類し、傾向を特定し、今後の研究分野を概説する総合的研究はいまだに残っていない。
その結果,NLPにおける研究分野の分類,最近のNLPの発展分析,研究成果の要約,今後の研究の方向性について概説した。
論文 参考訳(メタデータ) (2023-07-20T07:33:30Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Mapping Research Topics in Software Testing: A Bibliometric Analysis [9.462148324186398]
コワード分析(Co-word analysis)は、用語の共起に基づくテキストマイニング手法である。
我々の分析は、ソフトウェアテスト研究を関連トピックのクラスタにマッピングすることを可能にする。
このマップはまた、Webやモバイルアプリケーションや人工知能に関連するトピックなど、重要度が増しているトピックを示唆している。
論文 参考訳(メタデータ) (2021-09-09T08:06:51Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。