論文の概要: GRAND: Graph Neural Diffusion
- arxiv url: http://arxiv.org/abs/2106.10934v1
- Date: Mon, 21 Jun 2021 09:10:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 23:56:00.632190
- Title: GRAND: Graph Neural Diffusion
- Title(参考訳): GRAND: グラフ神経拡散
- Authors: Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan
Webb, Emanuele Rossi and Michael M. Bronstein
- Abstract要約: 本稿では,連続拡散過程としてグラフの深層学習にアプローチするグラフニューラル拡散(GRAND)を提案する。
我々のモデルでは、層構造と位相は時間的および空間的作用素の離散化選択に対応する。
我々のモデルの成功の鍵は、データの摂動に対する安定性であり、これは暗黙的および明示的な離散化スキームの両方に対処する。
- 参考スコア(独自算出の注目度): 15.00135729657076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Graph Neural Diffusion (GRAND) that approaches deep learning on
graphs as a continuous diffusion process and treats Graph Neural Networks
(GNNs) as discretisations of an underlying PDE. In our model, the layer
structure and topology correspond to the discretisation choices of temporal and
spatial operators. Our approach allows a principled development of a broad new
class of GNNs that are able to address the common plights of graph learning
models such as depth, oversmoothing, and bottlenecks. Key to the success of our
models are stability with respect to perturbations in the data and this is
addressed for both implicit and explicit discretisation schemes. We develop
linear and nonlinear versions of GRAND, which achieve competitive results on
many standard graph benchmarks.
- Abstract(参考訳): 本稿では,グラフ上の深層学習を連続拡散プロセスとしてアプローチし,グラフニューラルネットワーク(GNN)を基礎となるPDEの判断として扱うグラフニューラルネットワーク拡散(GRAND)を提案する。
本モデルでは,層構造とトポロジーは時間演算子と空間演算子の離散化選択に対応している。
我々のアプローチは、ディープ、オーバースムーシング、ボトルネックといったグラフ学習モデルの共通点に対処できる幅広いGNNのクラスを原則的に開発することを可能にする。
我々のモデルの成功の鍵はデータの摂動に対する安定性であり、暗黙的および明示的な離散化スキームの両方に対処する。
GRANDの線形および非線形バージョンを開発し、多くの標準グラフベンチマークで競合する結果を得る。
関連論文リスト
- Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
グラフ拡散方程式は、様々なグラフトポロジーの存在下で、どのように外挿して一般化するかを示す。
本稿では,新たなグラフエンコーダのバックボーンであるAdvective Diffusion Transformer (ADiT)を提案する。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Inlicit Graph Neural Networks (GNN)は、グラフ学習問題に対処する上で大きな成功を収めた。
パラメータ化グラフラプラシアン演算子に基づく暗黙グラフ拡散層を設計するための幾何学的枠組みを提案する。
ディリクレエネルギー最小化問題の固定点方程式として, 暗黙のGNN層がどう見えるかを示す。
論文 参考訳(メタデータ) (2023-08-07T05:22:33Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
グラフニューラルネットワーク(GNN)は、ソーシャルネットワークや生体システムのようなドメインで広く使われている。
GNNのローカリティ仮定は、グラフ内の長距離依存関係とグローバルパターンをキャプチャする能力を損なう。
本稿では,ブラヒクロニスト問題から着想を得た変分解析に基づく新しい帰納バイアスを提案する。
論文 参考訳(メタデータ) (2023-07-01T04:44:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - A Deep Latent Space Model for Graph Representation Learning [10.914558012458425]
本稿では,従来の潜時変動に基づく生成モデルをディープラーニングフレームワークに組み込むために,有向グラフのための深潜時空間モデル(DLSM)を提案する。
提案モデルは,階層的変動型オートエンコーダアーキテクチャによって階層的に接続されるグラフ畳み込みネットワーク(GCN)エンコーダとデコーダから構成される。
実世界のデータセットにおける実験により,提案モデルがリンク予測とコミュニティ検出の両タスクにおける最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-06-22T12:41:19Z) - Implicit Graph Neural Networks [46.0589136729616]
Indicit Graph Neural Networks (IGNN) と呼ばれるグラフ学習フレームワークを提案する。
IGNNは一貫して長距離依存を捉え、最先端のGNNモデルより優れている。
論文 参考訳(メタデータ) (2020-09-14T06:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。