論文の概要: Toward Knowledge Discovery Framework for Data Science Job Market in the
United States
- arxiv url: http://arxiv.org/abs/2106.11077v1
- Date: Mon, 14 Jun 2021 21:23:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-27 09:07:37.903883
- Title: Toward Knowledge Discovery Framework for Data Science Job Market in the
United States
- Title(参考訳): 米国におけるデータサイエンス求人市場のための知識発見フレームワーク
- Authors: Mojtaba Heidarysafa and Kamran Kowsari and Masoud Bashiri and Donald
E. Brown
- Abstract要約: 本稿では、米国内におけるデータサイエンス関連業務の求人市場分析のためのフレームワークを提案する。
提案するフレームワークには,連続データ収集,情報抽出,Webベースの視覚化ダッシュボードの3つのサブモジュールが含まれている。
このアプリケーションの現在のバージョンはWeb上にデプロイされており、個人や機関がデータサイエンスのポジションに必要なスキルを調査することができる。
- 参考スコア(独自算出の注目度): 1.7205106391379024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growth of the data science field requires better tools to understand such
a fast-paced growing domain. Moreover, individuals from different backgrounds
became interested in following a career as data scientists. Therefore,
providing a quantitative guide for individuals and organizations to understand
the skills required in the job market would be crucial. This paper introduces a
framework to analyze the job market for data science-related jobs within the US
while providing an interface to access insights in this market. The proposed
framework includes three sub-modules allowing continuous data collection,
information extraction, and a web-based dashboard visualization to investigate
the spatial and temporal distribution of data science-related jobs and skills.
The result of this work shows important skills for the main branches of data
science jobs and attempts to provide a skill-based definition of these data
science branches. The current version of this application is deployed on the
web and allows individuals and institutes to investigate skills required for
data science positions through the industry lens.
- Abstract(参考訳): データサイエンス分野の成長は、このような急速に成長する領域を理解するためのより良いツールを必要とする。
さらに、異なる背景を持つ個人は、データサイエンティストとしてのキャリアに興味を持つようになった。
そのため、雇用市場に必要なスキルを個人や組織が理解するための定量的ガイドが不可欠である。
本稿では,米国内におけるデータサイエンス関連のジョブのジョブマーケットを解析し,このマーケットの洞察にアクセスできるインターフェースを提供するためのフレームワークを提案する。
提案するフレームワークは,連続的なデータ収集,情報抽出,Webベースのダッシュボードビジュアライゼーションが可能な3つのサブモジュールから構成され,データサイエンス関連のジョブとスキルの空間的および時間的分布を調査する。
本研究の成果は、データサイエンス業務の主要部門にとって重要なスキルを示し、これらのデータサイエンス部門をスキルベースで定義しようとする試みである。
このアプリケーションの現在のバージョンはweb上にデプロイされ、個人や機関が業界レンズを通してデータサイエンスのポジションに必要なスキルを調査できる。
関連論文リスト
- DSBench: How Far Are Data Science Agents to Becoming Data Science Experts? [58.330879414174476]
現実的なタスクでデータサイエンスエージェントを評価するためのベンチマークであるDSBenchを紹介する。
このベンチマークには、466のデータ分析タスクと、EloquenceとKaggleのコンペからソースされた74のデータモデリングタスクが含まれている。
現状のLLM, LVLM, エージェントを評価したところ, 最高のエージェントはデータ解析タスクの34.12%しか解決できず, RPG(Relative Performance Gap)は34.74%であった。
論文 参考訳(メタデータ) (2024-09-12T02:08:00Z) - Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking [59.87055275344965]
Job-SDFは、ジョブスキルの需要予測モデルをトレーニングし、ベンチマークするために設計されたデータセットである。
2021年から2023年にかけて、中国の大手オンライン求人プラットフォームから集められた1035万件の求人広告に基づいている。
本データセットは,職業,企業,地域レベルなど,さまざまな粒度でのスキル需要予測モデルの評価を可能にする。
論文 参考訳(メタデータ) (2024-06-17T07:22:51Z) - A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
本研究では,Large Language Models (LLMs) を用いてデータの洞察の発見を自動化する可能性について検討する。
そこで本稿では,データセット内の意味的かつ関連する情報(フラグ)を識別する能力を測定するために,フラグを捕捉する原理に基づく新しい評価手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T14:20:06Z) - Assessing Scientific Contributions in Data Sharing Spaces [64.16762375635842]
本稿では、研究者の科学的貢献を測定するブロックチェーンベースのメトリクスであるSCIENCE-indexを紹介する。
研究者にデータ共有のインセンティブを与えるため、SCIENCE-indexはデータ共有パラメータを含むように拡張されている。
本モデルは, 地理的に多様な研究者の出力分布とh-indexの分布を比較して評価する。
論文 参考訳(メタデータ) (2023-03-18T19:17:47Z) - A Vision for Semantically Enriched Data Science [19.604667287258724]
ドメイン知識の活用やデータセマンティクスといった重要な分野は、ほとんど自動化されていない分野です。
データサイエンスの自動化のための新しいツールと組み合わせて、データに対する“セマンティック”な理解と推論を活用することが、一貫性と説明可能なデータ拡張と変換にどのように役立つか、私たちは考えています。
論文 参考訳(メタデータ) (2023-03-02T16:03:12Z) - Computational Skills by Stealth in Secondary School Data Science [16.960800464621993]
本稿では,学生によるデータサイエンスへの最初の露出における計算スキルのステルス開発について論じる。
このアプローチの目的は、データ駆動学習者になる際に、興味やコーディングの自己効力によらず、学生を支援することである。
論文 参考訳(メタデータ) (2020-10-08T09:11:51Z) - Data-Driven Aerospace Engineering: Reframing the Industry with Machine
Learning [49.367020832638794]
航空宇宙産業は、ビッグデータと機械学習を収益化しようとしている。
最近のトレンドは、設計、製造、検証、サービスにおける重要な課題の文脈で検討される。
論文 参考訳(メタデータ) (2020-08-24T22:40:26Z) - A fresh look at introductory data science [0.0]
本稿では、これらのニーズに対処するために設計されたデータサイエンスの入門学部のケーススタディを示す。
このコースには前提条件がなく、人文科学、社会科学、自然科学の学生だけでなく、目指す統計学やデータサイエンス専攻の幅広い聴衆に役立っている。
このようなコースを提供することによって生じる課題のユニークなセットについて議論し、これらの課題を踏まえて、教育設計要素、コンテンツ、構造、計算インフラ、およびコースの評価方法論について詳細な議論を行う。
論文 参考訳(メタデータ) (2020-08-01T18:39:34Z) - From Data to Knowledge to Action: A Global Enabler for the 21st Century [26.32590947516587]
コンピュータと数理科学の進歩が相まって、真の証拠に基づく意思決定を可能にする前例のない能力がもたらされた。
これらの機能は、データの大規模なキャプチャと、そのデータの洞察とレコメンデーションへの変換を可能にする。
商業、科学、教育、芸術、エンターテイメントのWebへの移行により、人間の活動に関する構造化された、非構造化されたデータベースが、これまで例のない量で利用可能になった。
論文 参考訳(メタデータ) (2020-07-31T19:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。