Data to Decisions: A Computational Framework to Identify skill requirements from Advertorial Data
- URL: http://arxiv.org/abs/2503.17424v1
- Date: Fri, 21 Mar 2025 09:49:31 GMT
- Title: Data to Decisions: A Computational Framework to Identify skill requirements from Advertorial Data
- Authors: Aakash Singh, Anurag Kanaujia, Vivek Kumar Singh,
- Abstract summary: The proposed framework uses techniques of statistical analysis, data mining and natural language processing for the purpose.<n>The analytical results not only provide useful insights about current state of skill needs in CS&IT industry but also provide practical implications to prospective job applicants, training agencies, and institutions of higher education & professional training.
- Score: 1.5621498886998335
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Among the factors of production, human capital or skilled manpower is the one that keeps evolving and adapts to changing conditions and resources. This adaptability makes human capital the most crucial factor in ensuring a sustainable growth of industry/sector. As new technologies are developed and adopted, the new generations are required to acquire skills in newer technologies in order to be employable. At the same time professionals are required to upskill and reskill themselves to remain relevant in the industry. There is however no straightforward method to identify the skill needs of the industry at a given point of time. Therefore, this paper proposes a data to decision framework that can successfully identify the desired skill set in a given area by analysing the advertorial data collected from popular online job portals and supplied as input to the framework. The proposed framework uses techniques of statistical analysis, data mining and natural language processing for the purpose. The applicability of the framework is demonstrated on CS&IT job advertisement data from India. The analytical results not only provide useful insights about current state of skill needs in CS&IT industry but also provide practical implications to prospective job applicants, training agencies, and institutions of higher education & professional training.
Related papers
- Tec-Habilidad: Skill Classification for Bridging Education and Employment [0.7373617024876725]
This paper develops a Spanish language dataset for skill extraction and classification.<n>It provides annotation methodology to distinguish between knowledge, skill, and abilities.<n>It also provides deep learning baselines to advance robust solutions for skill classification.
arXiv Detail & Related papers (2025-03-05T22:05:42Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI)<n>This paper explores potential areas where statisticians can make important contributions to the development of LLMs.<n>We focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation.
arXiv Detail & Related papers (2025-02-25T03:40:36Z) - Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking [59.87055275344965]
Job-SDF is a dataset designed to train and benchmark job-skill demand forecasting models.<n>Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023.<n>Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels.
arXiv Detail & Related papers (2024-06-17T07:22:51Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
This project tackles the pressing issue of human trafficking in online C2C marketplaces through advanced Natural Language Processing (NLP) techniques.
We introduce a novel methodology for generating pseudo-labeled datasets with minimal supervision, serving as a rich resource for training state-of-the-art NLP models.
A key contribution is the implementation of an interpretability framework using Integrated Gradients, providing explainable insights crucial for law enforcement.
arXiv Detail & Related papers (2023-11-22T02:45:01Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models.
The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies.
We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
arXiv Detail & Related papers (2023-07-03T16:01:45Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Practical Skills Demand Forecasting via Representation Learning of
Temporal Dynamics [4.536775100566484]
Rapid technological innovation threatens to leave much of the global workforce behind.
Governments and markets must find ways to quicken the rate at which the supply of skills reacts to changes in demand.
This paper presents a pipeline which makes one-shot multi-step forecasts into the future using a decade of monthly skill demand observations.
arXiv Detail & Related papers (2022-05-18T04:02:55Z) - "FIJO": a French Insurance Soft Skill Detection Dataset [0.0]
This article proposes a new public dataset, FIJO, containing insurance job offers, including many soft skill annotations.
We present the results of skill detection algorithms using a named entity recognition approach and show that transformers-based models have good token-wise performances on this dataset.
arXiv Detail & Related papers (2022-04-11T15:54:22Z) - Toward Knowledge Discovery Framework for Data Science Job Market in the
United States [1.7205106391379024]
This paper introduces a framework to analyze the job market for data science-related jobs within the US.
The proposed framework includes three sub-modules allowing continuous data collection, information extraction, and a web-based visualization dashboard.
The current version of this application is deployed on the web and allows individuals and institutes to investigate skills required for data science positions.
arXiv Detail & Related papers (2021-06-14T21:23:15Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.