A Turing Test for Transparency
- URL: http://arxiv.org/abs/2106.11394v1
- Date: Mon, 21 Jun 2021 20:09:40 GMT
- Title: A Turing Test for Transparency
- Authors: Felix Biessmann and Viktor Treu
- Abstract summary: A central goal of explainable artificial intelligence (XAI) is to improve the trust relationship in human-AI interaction.
Recent empirical evidence shows that explanations can have the opposite effect.
This effect challenges the very goal of XAI and implies that responsible usage of transparent AI methods has to consider the ability of humans to distinguish machine generated from human explanations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A central goal of explainable artificial intelligence (XAI) is to improve the
trust relationship in human-AI interaction. One assumption underlying research
in transparent AI systems is that explanations help to better assess
predictions of machine learning (ML) models, for instance by enabling humans to
identify wrong predictions more efficiently. Recent empirical evidence however
shows that explanations can have the opposite effect: When presenting
explanations of ML predictions humans often tend to trust ML predictions even
when these are wrong. Experimental evidence suggests that this effect can be
attributed to how intuitive, or human, an AI or explanation appears. This
effect challenges the very goal of XAI and implies that responsible usage of
transparent AI methods has to consider the ability of humans to distinguish
machine generated from human explanations. Here we propose a quantitative
metric for XAI methods based on Turing's imitation game, a Turing Test for
Transparency. A human interrogator is asked to judge whether an explanation was
generated by a human or by an XAI method. Explanations of XAI methods that can
not be detected by humans above chance performance in this binary
classification task are passing the test. Detecting such explanations is a
requirement for assessing and calibrating the trust relationship in human-AI
interaction. We present experimental results on a crowd-sourced text
classification task demonstrating that even for basic ML models and XAI
approaches most participants were not able to differentiate human from machine
generated explanations. We discuss ethical and practical implications of our
results for applications of transparent ML.
Related papers
- Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration [11.824688232910193]
We run a study on AI-assisted decision-making in which humans were supported by XAI.
Our findings reveal a misinformation effect when incorrect explanations accompany correct AI advice.
This effect causes humans to infer flawed reasoning strategies, hindering task execution and demonstrating impaired procedural knowledge.
arXiv Detail & Related papers (2024-09-19T14:34:20Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Responsibility: An Example-based Explainable AI approach via Training
Process Inspection [1.4610038284393165]
We present a novel XAI approach that identifies the most responsible training example for a particular decision.
This example can then be shown as an explanation: "this is what I (the AI) learned that led me to do that"
Our results demonstrate that responsibility can help improve accuracy for both human end users and secondary ML models.
arXiv Detail & Related papers (2022-09-07T19:30:01Z) - CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
Human Trust in Image Recognition Models [84.32751938563426]
We propose a new explainable AI (XAI) framework for explaining decisions made by a deep convolutional neural network (CNN)
In contrast to the current methods in XAI that generate explanations as a single shot response, we pose explanation as an iterative communication process.
Our framework generates sequence of explanations in a dialog by mediating the differences between the minds of machine and human user.
arXiv Detail & Related papers (2021-09-03T09:46:20Z) - Quality Metrics for Transparent Machine Learning With and Without Humans
In the Loop Are Not Correlated [0.0]
We investigate the quality of interpretable computer vision algorithms using techniques from psychophysics.
Our results demonstrate that psychophysical experiments allow for robust quality assessment of transparency in machine learning.
arXiv Detail & Related papers (2021-07-01T12:30:51Z) - A Comparative Approach to Explainable Artificial Intelligence Methods in
Application to High-Dimensional Electronic Health Records: Examining the
Usability of XAI [0.0]
XAI aims to produce a demonstrative factor of trust, which for human subjects is achieved through communicative means.
The ideology behind trusting a machine to tend towards the livelihood of a human poses an ethical conundrum.
XAI methods produce visualization of the feature contribution towards a given models output on both a local and global level.
arXiv Detail & Related papers (2021-03-08T18:15:52Z) - Joint Inference of States, Robot Knowledge, and Human (False-)Beliefs [90.20235972293801]
Aiming to understand how human (false-temporal)-belief-a core socio-cognitive ability unify-would affect human interactions with robots, this paper proposes to adopt a graphical model to the representation of object states, robot knowledge, and human (false-)beliefs.
An inference algorithm is derived to fuse individual pg from all robots across multi-views into a joint pg, which affords more effective reasoning inference capability to overcome the errors originated from a single view.
arXiv Detail & Related papers (2020-04-25T23:02:04Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z) - Deceptive AI Explanations: Creation and Detection [3.197020142231916]
We investigate how AI models can be used to create and detect deceptive explanations.
As an empirical evaluation, we focus on text classification and alter the explanations generated by GradCAM.
We evaluate the effect of deceptive explanations on users in an experiment with 200 participants.
arXiv Detail & Related papers (2020-01-21T16:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.