論文の概要: Querying in the Age of Graph Databases and Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2106.11456v1
- Date: Tue, 22 Jun 2021 00:17:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 04:56:13.161310
- Title: Querying in the Age of Graph Databases and Knowledge Graphs
- Title(参考訳): グラフデータベースと知識グラフの時代におけるクエリ
- Authors: Marcelo Arenas and Claudio Gutierrez and Juan F. Sequeda
- Abstract要約: グラフデータベースと知識グラフは、このプログラムの最も成功したソリューションである。
このチュートリアルは、これらの開発の根底にあるデータ管理タスクのコンセプトマップを提供する。
- 参考スコア(独自算出の注目度): 1.6436293069942312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs have become the best way we know of representing knowledge. The
computing community has investigated and developed the support for managing
graphs by means of digital technology. Graph databases and knowledge graphs
surface as the most successful solutions to this program. This tutorial will
provide a conceptual map of the data management tasks underlying these
developments, paying particular attention to data models and query languages
for graphs.
- Abstract(参考訳): グラフは知識を表現する最良の方法になっています。
コンピューティングコミュニティは、デジタル技術によるグラフ管理のサポートを調査し、開発してきた。
グラフデータベースと知識グラフは、このプログラムの最も成功したソリューションである。
このチュートリアルでは、これらの開発の基盤となるデータ管理タスクの概念マップを提供し、グラフのデータモデルやクエリ言語に特に注目する。
関連論文リスト
- Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
本稿では,グラフ間の効果的な知識伝達パラダイムとしてグラフ領域適応を提案する。
GDAは、ソースグラフとしてタスク関連のグラフを多数導入し、ソースグラフから学習した知識をターゲットグラフに適応させる。
研究状況と課題について概説し、分類学を提案し、代表作の詳細を紹介し、今後の展望について論じる。
論文 参考訳(メタデータ) (2024-02-01T02:44:32Z) - Towards Data-centric Graph Machine Learning: Review and Outlook [120.64417630324378]
データ中心グラフ機械学習(DC-GML)という,グラフデータライフサイクルのすべての段階を包含する体系的なフレームワークを導入する。
各段階の完全な分類法が示され、3つの重要なグラフ中心の質問に答える。
我々は、DC-GMLドメインの将来展望を指摘し、その進歩と応用をナビゲートするための洞察を提供する。
論文 参考訳(メタデータ) (2023-09-20T00:40:13Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Graph Lifelong Learning: A Survey [6.545297572977323]
本稿では,グラフ生涯学習のモチベーション,ポテンシャル,最先端のアプローチ,オープンな課題について論じる。
我々はこの新興分野に対する広範な研究と開発への関心を期待する。
論文 参考訳(メタデータ) (2022-02-22T06:14:07Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Graph Learning: A Survey [38.245120261668816]
本稿では,グラフ学習の現状について概観する。
グラフ信号処理,行列分解,ランダムウォーク,ディープラーニングなど,既存のグラフ学習手法の4つのカテゴリに特に注目されている。
テキスト,画像,科学,知識グラフ,最適化といった分野におけるグラフ学習アプリケーションについて検討する。
論文 参考訳(メタデータ) (2021-05-03T09:06:01Z) - Knowledge Graphs [43.06435841693428]
我々は、知識グラフに使用される様々なグラフベースのデータモデルとクエリ言語を動機付け、対比する。
本稿では,帰納的手法と帰納的手法を組み合わせた知識の表現と抽出について説明する。
我々は知識グラフの高レベルな今後の研究方向性を結論づける。
論文 参考訳(メタデータ) (2020-03-04T20:20:32Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
グラフデータのマイニングはコンピュータ科学においてポピュラーな研究トピックとなっている。
ネットワークデータの膨大な量は、効率的な分析に大きな課題をもたらしている。
これはグラフ表現の出現を動機付け、グラフを低次元ベクトル空間にマッピングする。
論文 参考訳(メタデータ) (2020-01-02T02:13:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。